Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T17:18:05.820Z Has data issue: false hasContentIssue false

Atmospheric structure and dynamics of evolved massive stars. Thanks to 3D radiative hydrodynamical simulations of stellar convection

Published online by Cambridge University Press:  30 November 2022

A. Chiavassa*
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Lagrange, CS 34229, Nice, France email: andrea.chiavassa@oca.eu Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evolved massive stars are major cosmic engines, providing strong mechanical and radiative feedback on their host environment. They contribute to the enrichment of their environment through a strong stellar winds, still poorly understood. Wind physics across the life cycle of these stars is the key ingredient to accomplish a complete understanding of their evolution in the near and distant Universe. Nowadays, the development of the observational instruments is so advanced that the observations became very sensitive to the details of the stellar surface making possible to quantitatively study what happens on their surfaces and above where the stellar winds become dominant. Three-dimensional radiative hydrodynamics simulations of evolved stars are essential to a proper and quantitative analysis of these observations. This work presents how these simulations have been (and will be) crucial to prepare and interpret a multitude of observations and how they are important to achieve the knowledge of the mass-loss mechanism.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alvarez, R., Jorissen, A., Plez, B., et al. 2000, A&A, 362, 655 Google Scholar
Alvarez, R., Jorissen, A., Plez, B., et al. 2001, A&A, 379, 305 Google Scholar
Alvarez, R., Jorissen, A., Plez, B., et al. 2001, A&A, 379, 288 Google Scholar
Arroyo-Torres, B., Mart-Vidal, I., Marcaide, J. M., et al. 2014, A&A, 566 Google Scholar
Arroyo-Torres, B., Wittkowski, M., Chiavassa, A., et al. 2015, A&A, 575, A50 Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., et al. 2009, ARAA, 47, 481 CrossRefGoogle Scholar
Aurière, M., Donati, J.-F., Konstantinova-Antova, R., et al. 2010, A&A, 516, L2 Google Scholar
Cannon, E., Montargès, M., de Koter, A., et al. 2021, MNRAS, 502, 369 CrossRefGoogle Scholar
Chiavassa, A., Plez, B., Josselin, E., et al. 2009, A&A, 506, 1351 Google Scholar
Chiavassa, A., Haubois, X., Young, J. S., et al. 2010, A&A, 515, A12 Google Scholar
Chiavassa, A., Lacour, S., Millour, F., et al. 2010, A&A, 511, A51 Google Scholar
Chiavassa, A., Pasquato, E., Jorissen, A., et al. 2011a, A&A, 528, A120 Google Scholar
Chiavassa, A., Freytag, B., Masseron, T., et al. 2011b, A&A, 535, A22 Google Scholar
Chiavassa, A. & Freytag, B. 2015, Why Galaxies Care about AGB Stars III: A Closer Look in Space and Time, 497, 11 Google Scholar
Chiavassa, A., Kravchenko, K., Millour, F., et al. 2020, A&A, 640, A23 Google Scholar
Chiavassa, A., Kravchenko, K., Montargès, M., et al. 2021, A&A in press, arXiv:2112.10695Google Scholar
Climent, J. B., Wittkowski, M., Chiavassa, A., et al. 2020, A&A, 635, A160 Google Scholar
Cotton, D. V., Bailey, J., De Horta, A. Y., et al. 2020, Research Notes of the American Astronomical Society, 4, 39 Google Scholar
Cranmer, S. R. & Saar, S. H. 2011, ApJ, 741, 54 CrossRefGoogle Scholar
Cruzalèbes, P., Jorissen, A., Rabbia, Y., et al. 2013, MNRAS, 434, 437 CrossRefGoogle Scholar
Davies, B., Kudritzki, R.-P., Lardo, C., et al. 2017, ApJ, 847, 112 CrossRefGoogle Scholar
Davies, B. & Plez, B. 2021, MNRAS, 508, 5757 CrossRefGoogle Scholar
De Beck, E., Decin, L., de Koter, A., et al. 2010, A&A, 523, A18 Google Scholar
Decin, L., Montargès, M., Richards, A. M. S., et al. 2020, Science, 369, 1497 CrossRefGoogle Scholar
Decin, L. 2021, ARAA, 59, 337 CrossRefGoogle Scholar
Dharmawardena, T. E., Mairs, S., Scicluna, P., et al. 2020, ApJ, 897, L9 CrossRefGoogle Scholar
Dupree, A. K., Strassmeier, K. G., Matthews, L. D., et al. 2020, ApJ, 899, 68 CrossRefGoogle Scholar
Freytag, B., Steffen, M., & Dorch, B. 2002, Astronomische Nachrichten, 323, 213 3.0.CO;2-H>CrossRefGoogle Scholar
Freytag, B., Steffen, M., Ludwig, H.-G., et al. 2012, Journal of Computational Physics, 231, 919 CrossRefGoogle Scholar
Freytag, B., Liljegren, S., & Höfner, S. 2017, A&A, 600, A137 Google Scholar
Giacinti, G., Dwarkadas, V., Marcowith, A., et al. 2019, 36th International Cosmic Ray Conference (ICRC2019), 36, 74 Google Scholar
Gray, D. F. 2008, ApJ, 135, 1450 CrossRefGoogle Scholar
Guinan, E., Wasatonic, R., Calderwood, T., et al. 2020, The Astronomer’s Telegram, 13512Google Scholar
Gustafsson, B. & Plez, B. 1992, Instabilities in Evolved Super- and Hypergiants, 86Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951 Google Scholar
Harper, G. M., Guinan, E. F., Wasatonic, R., et al. 2020, ApJ, 905, 34 CrossRefGoogle Scholar
Haubois, X., Perrin, G., Lacour, S., et al. 2009, A&A, 508, 923 Google Scholar
Höfner, S. & Freytag, B. 2019, A&A, 623, A158 CrossRefGoogle Scholar
Höfner, S. & Olofsson, H. 2018, ARAA, 26, 1Google Scholar
Josselin, E. & Plez, B. 2007, A&A, 469, 671 Google Scholar
Kervella, P., Lagadec, E., Montargès, M., et al. 2016, A&A, 585, A28 Google Scholar
Kervella, P., Decin, L., Richards, A. M. S., et al. 2018, A&A, 609, A67 Google Scholar
Kiss, L. L., Szabò, G. M., & Bedding, T. R. 2006, MNRAS, 372, 1721 CrossRefGoogle Scholar
Kravchenko, K., Van Eck, S., Chiavassa, A., et al. 2018, A&A, 610, A29 Google Scholar
Kravchenko, K., Chiavassa, A., Van Eck, S., et al. 2019, A&A, 632, A28 Google Scholar
Kravchenko, K., Jorissen, A., Van Eck, S., et al. 2021, A&A, 650, L17 Google Scholar
Langer, N. 2012, ARAA, 50, 107 CrossRefGoogle Scholar
Lebzelter, T., Trabucchi, M., Mowlavi, N., et al. 2019, A&A, 631, A24 Google Scholar
Levesque, E. M., Massey, P., Olsen, K. A. G., et al. 2005, ApJ, 628, 973 CrossRefGoogle Scholar
Levesque, E. M. 2018, ApJ, 867, 155 CrossRefGoogle Scholar
Levesque, E. M. & Massey, P. 2020, ApJ, 891, L37 CrossRefGoogle Scholar
Liljegren, S., Höfner, S., Freytag, B., et al. 2018, A&A, 619, A47 Google Scholar
Mathias, P., Aurière, M., Lόpez Ariste, A., et al. 2018, A&A, 615, A116 Google Scholar
Meynet, G., Chomienne, V., Ekström, S., et al. 2015, A&A, 575, A60 Google Scholar
Michelson, A. A. & Pease, F. G. 1921, ApJ, 53, 249. doi: 10.1086/142603 CrossRefGoogle Scholar
Monnier, J. D. 2003, Reports on Progress in Physics, 66, 789 CrossRefGoogle Scholar
Montargès, M., Kervella, P., Perrin, G., et al. 2014, A&A, 572, A17 Google Scholar
Montargès, M., Kervella, P., Perrin, G., et al. 2016, A&A, 588, A130 Google Scholar
Montargès, M., Chiavassa, A., Kervella, P., et al. 2017, A&A, 605, A108 Google Scholar
Montargès, M., Norris, R., Chiavassa, A., et al. 2018, A&A, 614, A12 Google Scholar
Montargès, M., Cannon, E., Lagadec, E., et al. 2021, Nature, 594, 365 CrossRefGoogle Scholar
Nordlund, Å, Stein, R. F., & Asplund, M. 2009, Living Reviews in Solar Physics, 6, 2 CrossRefGoogle Scholar
Norris, R. P., Baron, F. R., Monnier, J. D., et al. 2021, ApJ, 919, 124 CrossRefGoogle Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K.-H. 2017, Nature, 548, 310 CrossRefGoogle Scholar
Safonov, B., Dodin, A., Burlak, M., et al. 2020, arXiv:2005.05215Google Scholar
Uitenbroek, H., Dupree, A. K., & Gilliland, R. L. 1998, ApJ, 116, 2501 CrossRefGoogle Scholar
Wittkowski, M., Chiavassa, A., Freytag, B., et al. 2016, A&A, 587, A12 Google Scholar
Wittkowski, M., Arroyo-Torres, B., Marcaide, J. M., et al. 2017, A&A, 597, A9 Google Scholar
Wittkowski, M., Abellán, F. J., Arroyo-Torres, B., et al. 2017, A&A, 606, L1 Google Scholar