Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T10:54:26.123Z Has data issue: false hasContentIssue false

Advection-Dominated Accretion, Jets, and the Spectral Energy Distribution of LINERs

Published online by Cambridge University Press:  03 June 2010

Rodrigo S. Nemmen
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, Brazil Email: rodrigo.nemmen@ufrgs.br
Thaisa Storchi-Bergmann
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, Brazil Email: rodrigo.nemmen@ufrgs.br
Michael Eracleous
Affiliation:
Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
Feng Yuan
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace low-level accreting supermassive black holes. The observational properties of LLAGNs suggest that their central engines are intrinsically different from those of more luminous AGNs. It has been suggested that accretion in LLAGNs occurs via an advection-dominated accretion flow (ADAF) associated with strong jets. In order to probe the accretion physics in LLAGNs as a class, we model the multiwavelength spectral energy distributions (SEDs) of 24 LINERs (taken from a recent compilation by Eracleous et al.) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. These SEDs include radio, near-IR to near-UV HST data, and Chandra X-ray data. We find that the radio emission is severely underpredicted by ADAF models but can be explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, the jet, or from both components contributing at similar levels. From the model fits, we estimate important parameters of the central engine of LINERs, such as the mass accretion rate — relevant for studies of the feeding of AGNs — and the mass-loss rate in the jet and the jet power — relevant for studies of the kinetic feedback from jets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allen, S. W., Dunn, R. J. H, Fabian, A. C., Taylor, G. B., & Reynolds, C. S. 2006, MNRAS, 372, 21CrossRefGoogle Scholar
Bower, R. G., et al. 2006, MNRAS, 370, 645Google Scholar
Elvis, M., et al. 1994, ApJS, 95, 1Google Scholar
Eracleous, M., Hwang, J. A., & Flohic, H. M. L. G. 2010, submitted to ApJGoogle Scholar
Falcke, H., Körding, E., & Markoff, S. 2004, MNRAS, 414, 895Google Scholar
Heinz, S., Merloni, A., & Schwab, J. 2007, ApJ, 658, 9CrossRefGoogle Scholar
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1995, ApJS, 98, 477CrossRefGoogle Scholar
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJ, 487, 568Google Scholar
Ho, L.C. 2002, ApJ, 564, 120Google Scholar
Ho, L.C. 2008, ARAA, 46, 475Google Scholar
Ho, L.C. 2009, ApJ, 699, 626Google Scholar
Hopkins, P.F., Narayan, R., & Hernquist, L. 2006, ApJ, 643, 641Google Scholar
Maoz, D. 2007, MNRAS, 377, 1696CrossRefGoogle Scholar
Merloni, A., Heinz, S., & Di Matteo, T. 2003, MNRAS, 345, 1057CrossRefGoogle Scholar
Narayan, R., & McClintock, J. E. 2008, New Astron. Revs., 51, 733Google Scholar
Nemmen, R. S., et al. 2006, ApJ, 643, 652Google Scholar
Nemmen, R. S., Bower, R. G., Babul, A., & Storchi-Bergmann, T. 2007, MNRAS, 377, 1652Google Scholar
Okamoto, T., Nemmen, R. S., & Bower, R. G. 2008, MNRAS, 385, 161Google Scholar
Pellegrini, S. 2005, ApJ, 624, 155Google Scholar
Storchi-Bergmann, T., et al. 2003, ApJ, 598, 956CrossRefGoogle Scholar
Sharma, P., Quataert, E., Hammett, G. W., & Stone, J. M. 2007, ApJ, 667, 714Google Scholar
Sijacki, D., Springel, V., Di Matteo, T., & Hernquist, L. 2007, MNRAS, 380, 877Google Scholar
Terashima, Y., Iyomoto, N., Ho, L. C., & Ptak, A. F. 2002, ApJS, 139, 1CrossRefGoogle Scholar
Yuan, F., Quataert, E., & Narayan, R. 2003, ApJ, 598, 301Google Scholar
Yuan, F. 2007, in The Central Engine of Active Galactic Nuclei, ed. Ho, L.C. & Wang, J.-M. (San Francisco: ASP), p. 95Google Scholar
Yuan, F., Yu, Z., & Ho, L. C. 2009, ApJ, 703, 1034Google Scholar