Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T18:44:48.537Z Has data issue: false hasContentIssue false

Accretion Onto the Milky Way: The Smith Cloud

Published online by Cambridge University Press:  12 September 2016

Felix J. Lockman*
Affiliation:
National Radio Astronomy Observatory, P.O. Box 2 Green Bank, WV 24944USA email: jlockman@nrao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Active gas accretion onto the Milky Way is observed in an object called the Smith Cloud, which contains several million solar masses of neutral and warm ionized gas and is currently losing material to the Milky Way, adding angular momentum to the disk. It is several kpc in size and its tip lies 2 kpc below the Galactic plane. It appears to have no stellar counterpart, but could contain a stellar population like that of the dwarf galaxy Leo P. There are suggestions that its existence and survival require that it be embedded in a dark matter halo of a few 108 solar masses.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Adams, E. A. K., Giovanelli, R., & Haynes, M. P. 2013, ApJ, 768, 77 Google Scholar
Bland-Hawthorn, J., Veilleux, S., Cecil, G. N., et al. 1998, MNRAS, 299, 611 Google Scholar
Blitz, L., Spergel, D. N., Teuben, P. J., Hartmann, D., & Burton, W. B. 1999, ApJ, 514, 818 CrossRefGoogle Scholar
Braun, R. & Burton, W. B. 1999, A&A, 341, 437 Google Scholar
Brüns, C., Kerp, J., Kalberla, P. M. W., & Mebold, U. 2000, A&A, 357, 120 Google Scholar
Fox, A. J., Savage, B. D., & Wakker, B. P. 2006, ApJS, 165, 229 CrossRefGoogle Scholar
Grossi, M., Giovanardi, C., Corbelli, E., et al. 2008, A&A, 487, 161 Google Scholar
Hill, A. S., Haffner, L. M., & Reynolds, R. J. 2009, ApJ, 703, 1832 Google Scholar
Hill, A. S., Mao, S. A., Benjamin, R. A., Lockman, F. J., & McClure-Griffiths, N. M. 2013, ApJ, 777, 55 Google Scholar
Lehner, N., Howk, J. C., Thom, C., et al. 2012, MNRAS, 424, 2896 Google Scholar
Lockman, F. J., Murphy, E. M., Petty-Powell, S., & Urick, V. J. 2002, ApJS, 140, 331 Google Scholar
Lockman, F. J. 2003, ApJ, 591, L33 CrossRefGoogle Scholar
Lockman, F. J., Benjamin, R. A., Heroux, A. J., & Langston, G. I. 2008, ApJ, 679, L21 Google Scholar
Lockman, F. J. 2012, EAS Publications Series, 56, 189 Google Scholar
McQuinn, K. B. W., Skillman, E. D., Berg, D., et al. 2013, AJ, 146, 145 Google Scholar
Muller, C. A., Oort, J. H., & Raimond, E. 1963, Acad. Sci. Paris Comptes Rendus, 257, 1661 Google Scholar
Nichols, M. & Bland-Hawthorn, J. 2009, ApJ, 707, 1642 Google Scholar
Nichols, M., Mirabal, N., Agertz, O., Lockman, F. J., & Bland-Hawthorn, J. 2014, MNRAS, 442, 2883 Google Scholar
Pidopryhora, Y., Lockman, F. J., & Shields, J. C. 2007, ApJ, 656, 928 Google Scholar
Putman, M. E., Bland-Hawthorn, J., Veilleux, S., et al. 2003, ApJ, 597, 948 Google Scholar
Putman, M. E., Peek, J. E. G., Muratov, A., et al. 2009, ApJ, 703, 1486 Google Scholar
Putman, M. E., Peek, J. E. G., & Joung, M. R. 2012, Ann. Rev. Astr. Ap., 50, 491 Google Scholar
Shull, J. M., Jones, J. R., Danforth, C. W., & Collins, J. A. 2009, ApJ, 699, 754 Google Scholar
Smith, G. P. 1963, BAN, 17, 203 Google Scholar
Stark, D. V., Baker, A. D., & Kannappan, S. J. 2015, MNRAS, 446, 1855 Google Scholar
Thilker, D. A., Braun, R., Walterbos, R. A. M., et al. 2004, ApJ, 601, L39 CrossRefGoogle Scholar
Thom, C., Peek, J. E. G., Putman, M. E., et al. 2008, ApJ, 684, 364 Google Scholar
Wakker, B. P. & van Woerden, H. 1997, Ann. Rev. Astr. Ap., 35, 217 Google Scholar
Wakker, B. P., York, D. G., Wilhelm, R., et al. 2008, ApJ, 672, 298 Google Scholar
Westmeier, T., Brüns, C., & Kerp, J. 2008, MNRAS, 390, 1691 Google Scholar