Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-dksz7 Total loading time: 0.451 Render date: 2021-07-27T16:44:56.939Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Molecular clouds in a Milky Way progenitor at z = 1

Published online by Cambridge University Press:  04 June 2020

Miroslava Dessauges-Zavadsky
Affiliation:
Observatoire de Genève, Université de Genève, Versoix, Switzerland email: miroslava.dessauges@unige.ch
Johan Richard
Affiliation:
Université Lyon, Université Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval, France
Françoise Combes
Affiliation:
LERMA, Observatoire de Paris, PSL Research Université, CNRS, Sorbonne Université, UPMC Paris, France Collège de France, Paris, France
Daniel Schaerer
Affiliation:
Observatoire de Genève, Université de Genève, Versoix, Switzerland email: miroslava.dessauges@unige.ch CNRS, IRAP, Toulouse, France
Wiphu Rujopakarn
Affiliation:
Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Japan
Lucio Mayer
Affiliation:
Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, Switzerland Physik-Institut, University of Zurich, Zurich, Switzerland
Corresponding

Abstract

Thanks to the remarkable ALMA capabilities and the unique configuration of the Cosmic Snake galaxy behind a massive galaxy cluster, we could resolve molecular clouds down to 30 pc linear physical scales in a typical Milky Way progenitor at z = 1.036, through CO(4–3) observations performed at the ∼ 0.2″ angular resolution. We identified 17 individual giant molecular clouds. These high-redshift molecular clouds are clearly different from their local analogues, with 10–100 times higher masses, densities, and internal turbulence. They are offset from the Larson scaling relations. We argue that the molecular cloud physical properties are dependent on the ambient interstellar conditions particular to the host galaxy. We find these high-redshift clouds in virial equilibrium, and derive, for the first time, the CO-to-H2 conversion factor from the kinematics of independent molecular clouds at z = 1. The measured large clouds gas masses demonstrate the existence of parent gas clouds with masses high enough to allow the in-situ formation of similarly massive stellar clumps seen in the Cosmic Snake galaxy in comparable numbers. Our results support the formation of molecular clouds by fragmentation of turbulent galactic gas disks, which then become the stellar clumps observed in distant galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behrendt, M., Burkert, A., & Schartmann, M. 2016, ApJ (Letters), 819, L210.3847/2041-8205/819/1/L2CrossRefGoogle Scholar
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., & Blitz, L. 2008, ApJ, 686, 94810.1086/591513CrossRefGoogle Scholar
Bournaud, F.et al. 2014, ApJ, 780, 5710.1088/0004-637X/780/1/57CrossRefGoogle Scholar
Cava, A., Schaerer, D., Richard, J., Pérez-González, P.G., Dessauges-Zavadsky, M., Mayer, L., & Tamburello, V. 2018, Nat.As, 2, 7610.1038/s41550-017-0295-xCrossRefGoogle Scholar
Columbo, D.et al. 2014, ApJ, 784, 310.1088/0004-637X/784/1/3CrossRefGoogle Scholar
Cowie, L. L., Hu, E. M., & Songaila, A. 1995, AJ, 110, 157610.1086/117631CrossRefGoogle Scholar
Daddi, E.et al. 2015, A&A, 577, A46Google Scholar
Dekel, A.et al. 2009, Nature, 457, 4510.1038/nature07648CrossRefGoogle Scholar
Dessauges-Zavadsky, M., Schaerer, D., Cava, A., Mayer, L., & Tamburello, V. 2017, ApJ (Letters), 836, L2210.3847/2041-8213/aa5d52CrossRefGoogle Scholar
Dessauges-Zavadsky, M. & Adamo, A. 2018, MNRAS (Letters), 479, L11810.1093/mnrasl/sly112CrossRefGoogle Scholar
Elmegreen, B. G.et al. 2013, ApJ, 774, 8610.1088/0004-637X/774/1/86CrossRefGoogle Scholar
Elmegreen, B. G., Elmegreen, D. M., Tompkins, B., & Jenks, J. G. 2017, ApJ, 847, 1410.3847/1538-4357/aa88d4CrossRefGoogle Scholar
Evans, N. J. II et al. 2009, ApJS, 181, 32110.1088/0067-0049/181/2/321CrossRefGoogle Scholar
Girard, M., Dessauges-Zavadsky, M., Schaerer, D., Richard, J., Nakajima, K., & Cava, A. 2018, A&A, 619, A15Google Scholar
Girard, M., Dessauges-Zavadsky, M., Combes, F., Chisholm, J., Patricio, V., Richard, J., & Schaerer, D. 2019, A&A, 631, 10Google Scholar
Grudic, M. Y.et al. 2018, MNRAS, 475, 351110.1093/mnras/sty035CrossRefGoogle Scholar
Guo, Y.et al. 2018, ApJ, 853, 10810.3847/1538-4357/aaa018CrossRefGoogle Scholar
Hodge, J. A.et al. 2019, ApJ, 879, 13010.3847/1538-4357/ab1846CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS, 194, 80910.1093/mnras/194.4.809CrossRefGoogle Scholar
Leroy, A. K.et al. 2015, ApJ, 801, 2510.1088/0004-637X/801/1/25CrossRefGoogle Scholar
Patricio, V.et al. 2018, MNRAS, 477, 1810.1093/mnras/sty555CrossRefGoogle Scholar
Rujopakarn, J.et al. 2019, ApJ, accepted [arXiv:1904.04507]Google Scholar
Shibuya, T., Ouchi, M., Kubo, M., & Harikane, Y. 2016, ApJ, 821, 7210.3847/0004-637X/821/2/72CrossRefGoogle Scholar
Sun, J.et al. 2018, ApJ, 860, 17210.3847/1538-4357/aac326CrossRefGoogle Scholar
Swinbank, A. M.et al. 2015, ApJ (Letters), 806, L1710.1088/2041-8205/806/1/L17CrossRefGoogle Scholar
Tamburello, V., Mayer, L., Shen, S., & Wadsley, J. A. 2015, MNRAS, 453, 249010.1093/mnras/stv1695CrossRefGoogle Scholar
Walter, F.et al. 2016, ApJ, 833, 6710.3847/1538-4357/833/1/67CrossRefGoogle Scholar
Wisnioski, E.et al. 2015, ApJ, 799, 20910.1088/0004-637X/799/2/209CrossRefGoogle Scholar
Wei, L. H., Keto, E., & Ho, L. C. 2012, ApJ, 750, 13610.1088/0004-637X/750/2/136CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular clouds in a Milky Way progenitor at z = 1
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular clouds in a Milky Way progenitor at z = 1
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular clouds in a Milky Way progenitor at z = 1
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *