Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-kv5sj Total loading time: 0.179 Render date: 2021-09-27T20:54:53.959Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Detections of far-infrared [OIII] and dust emission in a galaxy at z = 8.312: Early metal enrichment in the heart of the reionization era

Published online by Cambridge University Press:  10 June 2020

Y. Tamura
Affiliation:
Department of Physics, Nagoya University, Japan email: ytamura@nagoya-u.jp
K. Mawatari
Affiliation:
Institute for Cosmic Ray Research, The University of Tokyo, Japan
T. Hashimoto
Affiliation:
Department of Environmental Science and Technology, Osaka Sangyo University, Japan National Astronomical Observatory of Japan, Japan
A. K. Inoue
Affiliation:
Department of Environmental Science and Technology, Osaka Sangyo University, Japan
E. Zackrissonm
Affiliation:
Department of Physics and Astronomy, Uppsala University, Sweden
L. Christensen
Affiliation:
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Denmark
C. Binggeli
Affiliation:
Department of Physics and Astronomy, Uppsala University, Sweden
Y. Matsuda
Affiliation:
National Astronomical Observatory of Japan, Japan
H. Matsuo
Affiliation:
National Astronomical Observatory of Japan, Japan
T. T. Takeuchi
Affiliation:
Department of Physics, Nagoya University, Japan email: ytamura@nagoya-u.jp
R. S. Asano
Affiliation:
Department of Physics, Nagoya University, Japan email: ytamura@nagoya-u.jp
K. Sunaga
Affiliation:
Department of Physics, Nagoya University, Japan email: ytamura@nagoya-u.jp
I. Shimizu
Affiliation:
Department of Earth & Space Science, Osaka University, Japan
T. Okamoto
Affiliation:
Department of Cosmosciences, Hokkaido University, Japan
N. Yoshida
Affiliation:
Department of Physics, The University of Tokyo, Japan Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Japan
M. Lee
Affiliation:
Department of Physics, Nagoya University, Japan email: ytamura@nagoya-u.jp National Astronomical Observatory of Japan, Japan
T. Shibuya
Affiliation:
Department of Computer Science, Kitami Institute of Technology, Japan
Y. Taniguchi
Affiliation:
The Open University of Japan, Japan
H. Umehata
Affiliation:
RIKEN Cluster for Pioneering Research, Japan
B. Hatsukade
Affiliation:
Institute of Astronomy, The University of Tokyo, Japan
K. Kohno
Affiliation:
Institute of Astronomy, The University of Tokyo, Japan
K. Ota
Affiliation:
Kyoto University Research Administration Office, Japan

Abstract

We present ALMA detection of the [O iii] 88 μm line and 850 μm dust continuum emission in a Y-dropout Lyman break galaxy, MACS0416_Y1. The [O iii] detection confirms the object with a spectroscopic redshift to be z = 8.3118±0.0003. The 850 μm continuum intensity (0.14 mJy) implies a large dust mass on the order of 4×106M. The ultraviolet-to-far infrared spectral energy distribution modeling, where the [O iii] emissivity model is incorporated, suggests the presence of a young (τage ≍ 4 Myr), star-forming (SFR ≍ 60Myr−1), and moderately metal-polluted (Z ≍ 0.2Z) stellar component with a stellar mass of 3 × 108M. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in ≍ 4 Myr, suggesting an underlying evolved stellar component as the origin of the dust mass.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asano, R., Takeuchi, T., Hirashita, H., & Inoue, A. K. 2013, Earth, Planet. & Space, 65, 213CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682CrossRefGoogle Scholar
Hashimoto, T., Laporte, N., Mawatari, K., Ellis, R. S., Inoue, A. K., Zackrisson, E., Roberts-Borsani, G., Zheng, W., et al. 2018, Nat., 557, 392CrossRefGoogle Scholar
Inoue, A. K. 2011, MNRAS, 415, 2920CrossRefGoogle Scholar
Inoue, A. K., Shimizu, I., Tamura, Y., Matsuo, H., Okamoto, T. & Yoshida, N. 2014, MNRAS, 442, 1805CrossRefGoogle Scholar
Inoue, A. K., Tamura, Y., Matsuo, H., Mawatari, K., Shimizu, I., Shibuya, T., Ota, K., Yoshida, N., et al. 2016, Science, 352, 155910.1126/science.aaf0714CrossRefGoogle Scholar
Laporte, N., Streblyanska, A., Kim, S., Pelló, R., Bauer, F. E., Bina, D., Brammer, G., De Leo, M. A., et al. 2015, A&A, 575, A92Google Scholar
Mawatari, K., et al. 2018, Proc. IAU Symp. No. 341, in this volumeGoogle Scholar
Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbé, I., & Stefanon, M. 2018, ApJ, 855, 105CrossRefGoogle Scholar
Planck Collaboration 2018, arXiv:1807.06209Google Scholar
Rieke, G. H., Alonso-Herrero, A., Weiner, B. J., et al. 2009, ApJ, 692, 556CrossRefGoogle Scholar
Shimizu, I., Inoue, A. K., Okamoto, T., & Yoshida, N. 2014, MNRAS, 440, 731CrossRefGoogle Scholar
Sunaga, K.et al. 2018, Proc. IAU Symp. No. 341, in this volumeGoogle Scholar
Tamura, Y., Mawatari, K., Hashimoto, T., Inoue, A. K., Zackrisson, E., Christensen, L., Binggeli, C., Matsuda, Y., et al. 2019, ApJ, 874, 27CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Detections of far-infrared [OIII] and dust emission in a galaxy at z = 8.312: Early metal enrichment in the heart of the reionization era
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Detections of far-infrared [OIII] and dust emission in a galaxy at z = 8.312: Early metal enrichment in the heart of the reionization era
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Detections of far-infrared [OIII] and dust emission in a galaxy at z = 8.312: Early metal enrichment in the heart of the reionization era
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *