Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T07:02:42.681Z Has data issue: false hasContentIssue false

3D Modeling of the Structure and Dynamics of a Main-Sequence F-type Star

Published online by Cambridge University Press:  24 September 2020

Irina N. Kitiashvili
Affiliation:
NASA Ames Research Center Moffett Field, MS 258-6, Mountain View, USA email: irina.n.kitiashvili@nasa.gov
Alan A. Wray
Affiliation:
NASA Ames Research Center Moffett Field, MS 258-6, Mountain View, USA email: alan.a.wray@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current state-of-the-art computational modeling makes it possible to build realistic models of stellar convection zones and atmospheres that take into account chemical composition, radiative effects, ionization, and turbulence. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of the stellar interior dynamics. Mixing-length models provide an initial approximation of stellar structure that can be used to initialize 3D radiative hydrodynamics simulations which include realistic modeling of turbulence, radiation, and other phenomena.

In this paper, we present 3D radiative hydrodynamic simulations of an F-type main-sequence star with 1.47 solar mass. The computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The effects of stellar rotation is modeled in the f-plane approximation. These simulations provide new insight into the properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, and the structure and dynamics of granulation. They reveal solar-type differential rotation and latitudinal dependence of the tachocline location.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Antoci, V., Cunha, M. S., Bowman, D. M., et al. 2019, MNRAS, 490, 4040CrossRefGoogle Scholar
Balona, L. A. 2015, MNRAS, 447, 2714CrossRefGoogle Scholar
Beeck, B., Schüssler, M., Cameron, R. H., & Reiners, A. 2015, A&A, 581, A42Google Scholar
Brito, A. & Lopes, I. 2019, MNRAS, 488, 1558CrossRefGoogle Scholar
Carroll, T. A. & Strassmeier, K. G. 2014, A&A, 563, A56Google Scholar
Eggenberger, P., Meynet, G., Maeder, A., et al. 2010, A&A, 519, A116Google Scholar
Kitiashvili, I. N., Guzik, J. A., Kosovichev, A. G., et al. 2012, Astronomical Society of the Pacific Conference Series, Vol. 462, Radiation Hydrodynamics Simulations of Turbulent Convection for Kepler Target Stars, ed. H. Shibahashi, M. Takata, & A. E. Lynas-Gray, 378Google Scholar
Kitiashvili, I. N., Kosovichev, A. G., Mansour, N. N., & Wray, A. A. 2016, ApJL, 821, L17CrossRefGoogle Scholar
Law, W. Y. 1981, A&A, 102, 178Google ScholarPubMed
MacGregor, K. B., Jackson, S., Skumanich, A., & Metcalfe, T. S. 2007, ApJ, 663, 560CrossRefGoogle Scholar
Mathur, S., Garca, R. A., Bugnet, Lisa and Santos, Â. R. G., Santiago, N., & Beck, P. G. 2019, Frontiers in Astronomy and Space Sciences, 6, 46CrossRefGoogle Scholar
Morel, P. 1997, A&AS, 124, 597Google Scholar
Morel, P. & Lebreton, Y. 2008, Ap&SS, 316, 61Google Scholar
Nordlund, Å. & Stein, R. F. 2001, ApJ, 546, 576CrossRefGoogle Scholar
Salhab, R. G., Steiner, O., Berdyugina, S. V., et al. 2018, A&A, 614, A78Google Scholar
Strassmeier, K. G., Carroll, T. A., & Ilyin, I. V. 2019, A&A, 625, A27Google Scholar
Wray, A. A., Bensassiy, K., Kitiashvili, I. N., Mansour, N. N., & Kosovichev, A. G. 2018, Realistic simulations of Stellar Radiative MHD. In Book: Variability of the Sun and Sun-like Stars: from Asteroseismology to Space Weather, ed. Rozelot, E. B. J.-P. (EDP Sciences), 3962CrossRefGoogle Scholar