We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send this article to your account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fibonacci algebras are groups equipped with an extra unary operation φ that satisfies a Fibonacci-type law. We described in an earlier paper the free objects in the resulting varieties, and here we do the same in the case when φ is assumed to be periodic. They turn out to be central extensions of Burnside groups with finite kernels whose orders can be expressed in terms of the resultants of certain polynomials.
Maximal left ideals in matrix rings were studied by Stone [10]. Similar results are not necessarily valid in the general near-ring case and one of the objectives of this paper is to study these differences. Furthermore, although much is known about 2-primitivity in general matrix near-rings (Van der Walt [11]), quite the opposite is true for 0-primitivity and the other objective of this paper is to present some results on 0-primitivity in matrix near-rings in certain restricted cases.
as x→∞ in the sector |Argx|≦π/2–δ. Here δ, Re(a), and Re(s) are positive and r is a positive integer. In the case a = r = s = 1, this yields the nontrivial result
The authors together with M. J. Karbe [Ill. J. Math. 33 (1989) 333–359] have considered Fitting classes of -groups and, under some rather strong restrictions, obtained an existence and conjugacy theorem for -injectors. Results of Menegazzo and Newell show that these restrictions are, in fact, necessary.
The Fitting class is normal if, for each is the unique -injector of G. is abelian normal if, for each. For finite soluble groups these two concepts coincide but the class of Černikov-by-nilpotent -groups is an example of a nonabelian normal Fitting class of -groups. In all known examples in which -injectors exist is closely associated with some normal Fitting class (the Černikov-by-nilpotent groups arise from studying the locally nilpotent injectors).
Here we investigate normal Fitting classes further, paying particular attention to the distinctions between abelian and nonabelian normal Fitting classes. Products and intersections with (abelian) normal Fitting classes lead to further examples of Fitting classes satisfying the conditions of the existence and conjugacy theorem.
Let S be a subsemigroup of a semigroup Q. Then Q is a semigroup of left quotients of S if every element of Q can be written as a*b, where a lies in a group -class of Q and a* is the inverse of a in this group; in addition, we insist that every element of S satisfying a weak cancellation condition named square-cancellable lie in a subgroup of Q.
J. B. Fountain and M. Petrich gave an example of a semigroup having two non-isomorphic semigroups of left quotients. More positive results are available if we restrict the classes of semigroups from which the semigroups of left quotients may come. For example, a semigroup has at most one bisimple inverse ω-semigroup of left quotients. The crux of the matter is the restrictions to a semigroup S of Green's relations ℛ and ℒ in a semigroup of quotients of S. With this in mind we give necessary and sufficient conditions for two semigroups of left quotients of S to be isomorphic under an isomorphism fixing S pointwise.
The above result is then used to show that if R is a subring of rings Q1 and Q2 and the multiplicative subsemigroups of Q1 and Q2 are semigroups of left quotients of the multiplicative semigroup of R, then Ql and Q2 are isomorphic rings.
Let be a class of finite groups. Then a c-group shall be a topological group which has a fundamental system of open neighbourhoods of the identity consisting of normal subgroups with -factor groups and trivial intersection. In this note we study groups which are existentially closed (e.c.) with respect to the class Lc of all direct limits of c-groups (where satisfies certain closure properties). We show that the so-called locally closed normal subgroups of an e.c. Lc-group are totally ordered via inclusion. Moreover it turns out that every ∀2-sentence, which is true for countable e.c. L-groups, also holds for e.c. Lc-groups. This allows it to transfer many known properties from e.c. L-groups to e.c. Lc-groups.
Let R be a ring. An element p of R is a prime element if pR = Rp is a prime ideal of R. A prime ring R is said to be a Unique Factorisation Ring if every non-zero prime ideal contains a prime element. This paper develops the basic theory of U.F.R.s. We show that every polynomial extension in central indeterminates of a U.F.R. is a U.F.R. We consider in more detail the case when a U.F.R. is either Noetherian or satisfies a polynomial identity. In particular we show that such a ring R is a maximal order, that every height-1 prime ideal of R has a classical localisation in which every two-sided ideal is principal, and that R is the intersection of a left and right Noetherian ring and a simple ring.
In this paper, we prove that if is an increasing sequence of strictly positive and continuous functions on a locally compact Hausdorff space X such that then the Fréchet space C(X) is distinguished if and only if it satisfies Heinrich's density condition, or equivalently, if and only if the sequence satisfies condition (H) (cf. e.g.‵[1] for the introduction of (H)). As a consequence, the bidual λ∞(A) of the distinguished Köthe echelon space λ0(A) is distinguished if and only if the space λ1(A) is distinguished. This gives counterexamples to a problem of Grothendieck in the context of Köthe echelon spaces.
Let G be a locally compact connected topological group. Let Aut0G be the identity component of the group of all bi-continuous automorphisms of G topologized by Birkhoff topology. We give a necessary and sufficient condition for Aut0G to be locally compact.
Recent research on aspects of distributive lattices, p-algebras, double p-algebras and de-Morgan algebras (see [2] and the references therein) has led to the consideration of the classes (n≧1) of distributive lattices having no n + 1-element chain in their poset of prime ideals. In [1] we were obliged to characterize the members of by a sentence in the first-order theory of distributive lattices. Subsequently (see [2]), it was realised that coincides with the class of distributive lattices having n+1-permutable congruences. This result is hereby employed to describe those distributive p-algebras and double p-algebras having n-permutable congruences. As an application, new characterizations of those distributive p-algebras and double p-algebras having the property that their compact congruences are principal are obtained. In addition, those varieties of distributive p-algebras and double p-algebras having n-permutable congruences are announced.
A well known lemma of Burnside is generalised, to give necessary and sufficient conditions for a finite p-group K to be normally embedded in a nilpotent group V, with K⊆ω(V). (Here, ω denotes a single word and ω(V) is the corresponding verbal subgroup.) Our main result is related to earlier work of Blackburn, Gaschütz and Hobby.
This paper is concerned with two notions of cohomological triviality for Banach algebras, weak amenability and cyclic amenability. The first is defined within Hochschild cohomology and the latter within cyclic cohomology. Our main result is that where ℱ is a Banach algebraic free product of two Banach algebras and ℬ. It follows that cyclic amenability is preserved under the formation of free products.