The $q$-coloured Delannoy numbers $D_{n,k}(q)$ count the number of lattice paths from $(0,\,0)$ to $(n,\,k)$ using steps $(0,\,1)$, $(1,\,0)$ and $(1,\,1)$, among which the $(1,\,1)$ steps are coloured with $q$ colours. The focus of this paper is to study some analytical properties of the polynomial matrix $D(q)=[d_{n,k}(q)]_{n,k\geq 0}=[D_{n-k,k}(q)]_{n,k\geq 0}$, such as the strong $q$-log-concavity of polynomial sequences located in a ray or a transversal line of $D(q)$ and the $q$-total positivity of $D(q)$. We show that the zeros of all row sums $R_n(q)=\sum \nolimits _{k=0}^{n}d_{n,k}(q)$ are in $(-\infty,\, -1)$ and are dense in the corresponding semi-closed interval. We also prove that the zeros of all antidiagonal sums $A_n(q)=\sum \nolimits _{k=0}^{\lfloor n/2 \rfloor }d_{n-k,k}(q)$ are in the interval $(-\infty,\, -1]$ and are dense there.