Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T17:49:18.900Z Has data issue: false hasContentIssue false

Some congruences for 12-coloured generalized Frobenius partitions

Published online by Cambridge University Press:  02 May 2024

Su-Ping Cui
Affiliation:
School of Mathematical Sciences, Qufu Normal University, Qufu, PR China
Nancy S. S. Gu
Affiliation:
Center for Combinatorics, LPMC, Nankai University, Tianjin, PR China
Dazhao Tang*
Affiliation:
School of Mathematical Sciences, Chongqing Normal University, Chongqing, PR China
*
Corresponding author: Dazhao Tang, email: dazhaotang@sina.com

Abstract

In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaca, A., Alaca, S., Williams, K.S., On the two-dimensional theta functions of the Borweins, Acta Arith. 124 (2006), no. 2, 177195.CrossRefGoogle Scholar
Andrews, G. E., Generalized Frobenius partitions, Mem. Amer. Math. Soc. 49 (1984), no. 301, Google Scholar
Baruah, N. D., Sarmah, B. K., Congruences for generalized Frobenius partitions with 4 colors, Discrete Math. 311 (2011), no. 17, 18921902.CrossRefGoogle Scholar
Baruah, N. D., Sarmah, B. K., Generalized Frobenius partitions with 6 colors, Ramanujan J. 38 (2015), no. 2, 361382.CrossRefGoogle Scholar
Berndt, B. C., Ramanujan’s Notebooks. Part III., Springer-Verlag, New York, 1991.CrossRefGoogle Scholar
Cao, Z., Integer matrix exact covering systems and product identities for theta functions, Int. Math. Res. Not. IMRN, no. 19, (2011), 44714514.Google Scholar
Chan, H., Wang, L., Yang, Y., Congruences modulo 5 and 7 for 4-colored generalized Frobenius partitions, J. Aust. Math. Soc. 103 (2017), no. 2, 157176.CrossRefGoogle Scholar
Chan, H., Wang, L., Yang, Y., Modular forms and k-colored generalized Frobenius partitions, Trans. Amer. Math. Soc. 371 (2019), no.3, 21592205.CrossRefGoogle Scholar
Cui, S.-P., Gu, N. S. S., Congruences modulo powers of 2 for generalized Frobenius partitions with six colors, Int. J. Number Theory 15 (2019), no. 6, 11731181.CrossRefGoogle Scholar
Cui, S.-P., Gu, N. S. S., Huang, A. X., Congruence properties for a certain kind of partition functions, Adv. Math. 290 (2016), 739772.CrossRefGoogle Scholar
Cui, S.-P., Gu, N. S. S., Tang, D., The method of constant terms and k-colored generalized Frobenius partitions, J. Combin. Theory Ser. A 203 (2024), CrossRefGoogle Scholar
Eichhorn, D., Sellers, J. A., Computational proofs of congruences for 2-colored Frobenius partitions, Int. J. Math. Math. Sci. 29 (2002), no. 6, 333340.CrossRefGoogle Scholar
Garvan, F. G., Sellers, J. A., Congruences for generalized Frobenius partitions with an arbitrarily large number of colors, Integers 14 (2014), Google Scholar
Gu, C., Wang, L., Xia, E. X. W., Congruences modulo powers of 3 for generalized Frobenius partitions with six colors, Acta Arith. 175 (2016), no. 3, 291300.Google Scholar
Hirschhorn, M. D., A letter from Fitzroy House, Amer. Math. Monthly 115 (2008), no. 6, 563566.CrossRefGoogle Scholar
Hirschhorn, M. D., Some congruences for 6-colored generalized Frobenius partitions, Ramanujan J. 40 (2016), no. 3, 463471.CrossRefGoogle Scholar
Hirschhorn, M. D., The Power of q. A personal journey. Developments in Mathematics, 49, Springer, Cham, 2017.Google Scholar
Hirschhorn, M. D., Garvan, F., Borwein, J., Cubic analogues of the Jacobian theta function $\unicode{x03B8}(z,q)$, Canad. J. Math. 45 (1993), no. 4, 673694.CrossRefGoogle Scholar
Hirschhorn, M. D., Sellers, J. A., Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput. 53 (2005), 6573.Google Scholar
Hirschhorn, M. D., Sellers, J. A., Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), no. 3, 273284.CrossRefGoogle Scholar
Hirschhorn, M. D., Sellers, J. A., Infinitely many congruences modulo 5 for 4-colored Frobenius partitions, Ramanujan J. 40 (2016), no. 1, 193200.CrossRefGoogle Scholar
Jameson, M., Wieczorek, M., Congruences for modular forms and generalized Frobenius partitions, Ramanujan J. 52 (2020), no. 3 541553.CrossRefGoogle Scholar
Jiang, Y., Rolen, L., Woodbury, M., Generalized Frobenius partitions, Motzkin paths, and Jacobi forms, J. Combin. Theory Ser. A 190 (2022), CrossRefGoogle Scholar
Kolitsch, L. W., An extension of a congruence by Andrews for generalized Frobenius partitions, J. Combin. Theory Ser. A 45 (1987), no. 1, 3139.CrossRefGoogle Scholar
Lin, B. L. S., New Ramanujan type congruence modulo 7 for 4-colored generalized Frobenius partitions, Int. J. Number Theory 10 (2014), no. 3, 637639.CrossRefGoogle Scholar
Lovejoy, J., Ramanujan-type congruences for three colored Frobenius partitions, J. Number Theory 85 (2000), no. 2, 283290.CrossRefGoogle Scholar
Mestrige, S. P., Congruences for a class of eta-quotients and their applications, Ramanujan J. 58 (2022), no. 2, 407433.CrossRefGoogle Scholar
Ono, K., Congruences for Frobenius partitions, J. Number Theory 57 (1996), no. 1, 170180.CrossRefGoogle Scholar
Paule, P., Radu, C.-S., The Andrews-Sellers family of partition congruences, Adv. Math. 230 (2012), no. 3, 819838.CrossRefGoogle ScholarPubMed
Qu, Y., A proof of a result of Hirschhorn and Sellers on 4-colored generalized Frobenius partitions, Ars Combin. 150 (2020), 99104.Google Scholar
Sellers, J. A., An unexpected congruence modulo 5 for 4-colored generalized Frobenius partitions, J. Indian Math. Soc.(N.S.), 2013 Special volume to commemorate the 125th birth anniversary of Srinivasa Ramanujan, 97103.Google Scholar
Tang, D., Congruences modulo powers of 3 for 6-colored generalized Frobenius partitions, Contrib. Discrete Math., to appear.Google Scholar
Tang, D., Congruence properties of 8- and 9-colored generalized Frobenius partitions modulo 5, submitted.Google Scholar
Wang, C., Zhang, W., A unified proof of Ramanujan-type congruences modulo 5 for 4-colored generalized Frobenius partitions, J. Math. Anal. Appl. 447 (2017), no. 1, 542549.CrossRefGoogle Scholar
Wang, L., Arithmetic identities and congruences for partition triples with 3-cores, Int. J. Number Theory 12 (2016), no. 4, 9951110.CrossRefGoogle Scholar
Wang, L., Congruences modulo powers of 3 for 3- and 9-colored generalized Frobenius partitions, Discrete Math. 341 (2018), no. 12, 33703384.CrossRefGoogle Scholar
Xia, E. X. W., Proof of a conjecture of Baruah and Sarmah on generalized Frobenius partitions with 6 colors, J. Number Theory 147 (2015), 852860.CrossRefGoogle Scholar
Xia, E. X. W., A Ramanujan-type congruence modulo 5 for 4-colored generalized Frobenius partitions, Ramanujan J. 39 (2016), no. 3, 567576.CrossRefGoogle Scholar
Xiong, X., Congruences modulo powers of 5 for three colored Frobenius partitions, arXiv:1003.0072 [math NT]. 2010.Google Scholar
Yao, O. X. M., Xia, E. X. W., New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory 133 (2013), no. 6, 19321949.CrossRefGoogle Scholar
Zhang, W., Wang, C., An unexpected Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partitions, Ramanujan J. 44 (2017), no. 1, 125131.CrossRefGoogle Scholar