Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dwt4q Total loading time: 0.268 Render date: 2021-06-14T10:58:50.022Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

On the continuation of solutions of non-autonomous semilinear parabolic problems

Published online by Cambridge University Press:  13 July 2015

Alexandre N. Carvalho
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos, São Paulo, Brazil (andcarva@icmc.usp.br)
Jan W. Cholewa
Affiliation:
Institute of Mathematics, Silesian University, 40-007 Katowice, Poland (jan.cholewa@us.edu.pl)
Marcelo J. D. Nascimento
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo, Brazil (marcelo@dm.ufscar.br)

Abstract

We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces Eσ, σ ∈ [0,1 + μ). We consider a suitable E1+ε-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+ε-solution and a situation when the E1+ε-norm of the solution blows up, in which case a piecewise E1+ε-solution is constructed.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Commun. Pure Appl. Math. 12 (1959), 623727.CrossRefGoogle Scholar
2. Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Commun. Pure Appl. Math. 7 (1964), 3592.CrossRefGoogle Scholar
3. Amann, H., Existence and regularity for semilinear parabolic evolution equations, Annali Scuola Norm. Sup. Pisa 11 (1984), 693–676.Google Scholar
4. Amann, H., Global existence for semilinear parabolic systems, J. Reine Angew. Math. 360 (1985), 4783.Google Scholar
5. Amann, H., On abstract parabolic fundamental solution, J. Math. Soc. Jpn 39 (1987), 93116.CrossRefGoogle Scholar
6. Amann, H., Parabolic evolution equations in interpolation and extrapolation spaces, J. Funct. Analysis 78 (1988), 233270.CrossRefGoogle Scholar
7. Amann, H., Linear and quasilinear parabolic problems, volume I: abstract linear theory, Monographs in Mathematics, Volume 89 (Birkhäuser, 1995).CrossRefGoogle Scholar
8. Amann, H., Hieber, M. and Simonett, G., Bounded H-calculus for elliptic operators, Diff. Integ. Eqns 3 (1994), 613653.Google Scholar
9. Arrieta, J. M. and Carvalho, A. N., Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and heat equations, Trans. Am. Math. Soc. 352 (2000), 285310.CrossRefGoogle Scholar
10. Barbu, V., Nonlinear semigroups and differential equations in Banach spaces (Noordhoff, Groningen, 1976).CrossRefGoogle Scholar
11. Carvalho, A. N. and Cholewa, J. W., Local well-posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc. 66 (2002), 443463.CrossRefGoogle Scholar
12. Carvalho, A. N. and Cholewa, J. W., Attractors for strongly damped wave equations with critical nonlinearities, Pac. J. Math. 207 (2002), 287310.CrossRefGoogle Scholar
13. Carvalho, A. N. and Cholewa, J. W., Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Analysis Applic. 310 (2005), 557578.CrossRefGoogle Scholar
14. Carvalho, A. N. and Cholewa, J. W., Strongly damped wave equations in , Discrete Contin. Dynam. Syst. (Suppl.) (2007), 230239.Google Scholar
15. Carvalho, A. N. and Nascimento, M. J. D., Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dynam. Syst. S 2 (2009), 449471.Google Scholar
16. Chen, S. and Triggiani, R., Proof of extension of two conjectures on structural damping for elastic systems: the case ½ ⩽ α ⩽ 1, Pac. J. Math. 136 (1989), 1555.CrossRefGoogle Scholar
17. Cholewa, J. W. and Dlotko, T., Global attractors in abstract parabolic problems (Cambridge University Press, 2000).CrossRefGoogle Scholar
18. Cholewa, J. W. and Rodriguez-Bernal, A., Linear and semilinear higher order parabolic equations in , Nonlin. Analysis TMA 75 (2012), 194210.CrossRefGoogle Scholar
19. Denk, R., Dore, G., Hieber, M., Prüss, J. and Venni, A., New thoughts on old results of R. T. Seeley, Math. Annalen 328 (2004), 545583.CrossRefGoogle Scholar
20. Friedman, A., Partial differential equations of parabolic type (Prentice Hall, Englewood Cliffs, NJ, 1964).Google Scholar
21. Henry, D., Geometric theory of semilinear parabolic equations (Springer, 1981).CrossRefGoogle Scholar
22. Lunardi, A., Analytic semigroup and optimal regularity in parabolic problems (Birkhäuser, 1995).Google Scholar
23. Pazy, A., Semigroups of linear operators and applications to partial differential equations (Springer, 1983).CrossRefGoogle Scholar
24. Prüss, J. and Sohr, H., Imaginary powers of elliptic second order differential operators in Lp-spaces, Hiroshima Math. J. 23 (1993), 161192.Google Scholar
25. Seeley, R., Interpolation in Lp with boundary conditions, Studia Math. 44 (1972), 4760.CrossRefGoogle Scholar
26. Sobolevskiǐ, P. E., Equations of parabolic type in a Banach space, Am. Math. Soc. Transl. 2 49 (1966), 162.Google Scholar
27. Tanabe, H., Functional analytic methods for partial differential equations (Dekker, New York, 1997).Google Scholar
28. Triebel, H., Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam, 1978).Google Scholar
29. von Wahl, W., Global solutions to evolution equations of parabolic type, in Differential equations in Banach spaces (ed. Favini, A. and Obrecht, E.), Lecture Notes in Mathematics, Volume 1223, pp. 254266 (Springer, 1986).CrossRefGoogle Scholar
30. Yagi, A., Abstract parabolic evolution equations and their applications, Springer Monographs in Mathematics (Springer, 2010).CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the continuation of solutions of non-autonomous semilinear parabolic problems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the continuation of solutions of non-autonomous semilinear parabolic problems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the continuation of solutions of non-autonomous semilinear parabolic problems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *