Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-wkm24 Total loading time: 0.351 Render date: 2021-06-22T15:27:40.850Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

On fractional heat equations with non-local initial conditions

Published online by Cambridge University Press:  08 July 2015

Bruno de Andrade
Affiliation:
Instituto de Ciências Matemáticas e de Computaҫão, Universidade de São Paulo, Campus de São Carlos, CEP 13560-970, São Carlos, São Paulo, Brazil (bruno00luis@gmail.com)
Claudio Cuevas
Affiliation:
Departamento de Matemática, Universidade Federal de Pernambuco, CEP 50540-740, Recife, Pernambuco, Brazil (cch@dmat.ufpe.br)
Herme Soto
Affiliation:
Departamento de Matemática e Estadística, Universidad de La Frontera, Cosilla 54D Temuco, Chile (hsoto@ufro.cl)
Corresponding

Abstract

In this paper we consider the problem of existence of mild solutions to semilinear fractional heat equations with non-local initial conditions. We provide sufficient conditions for existence and regularity of such solutions.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function spaces, differential operators and nonlinear analysis (ed. Schmeisser, H.-J. and Triebel, H.), Teubner-Texte zur Mathematik, Volume 133, pp. 9126 (Teubner, Leipzig/Stuttgart, 1993).CrossRefGoogle Scholar
2. Cardinali, T. and Rubbioni, P., Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces, Nonlin. Analysis TMA 75 (2012), 871879.CrossRefGoogle Scholar
3. Chabrowski, J., On nonlocal problems for parabolic equations, Nagoya Math. J. 93 (1984), 109131.CrossRefGoogle Scholar
4. Deng, K., Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Analysis Applic. 179 (1993), 630637.CrossRefGoogle Scholar
5. Henry, D., Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Volume 840 (Springer, 1981).CrossRefGoogle Scholar
6. Kerefov, A. A., Non-local boundary value problems for parabolic equation, Diff. Uravn. 15 (1979), 5255.Google Scholar
7. Kexue, L, Jigen, P. and Junxiong, J., Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives, J. Funct. Analysis 263 (2012) 476510.Google Scholar
8. Mainardi, F., Fractional calculus and waves in linear viscoelasticity (Imperial College Press, London, 2010).CrossRefGoogle Scholar
9. Mittag-Leffler, G. M., Une généralisation de l'integrale de Laplace–Abel, C. R. Acad. Sci. Paris II 137 (1903), 537539.Google Scholar
10. Mittag-Leffler, G. M., Sur la nouvelle fonction E α(x), C. R. Acad. Sci. Paris II 137 (1903), 554558.Google Scholar
11. Mittag-Leffler, G. M., Sur la représentation analytique d'une branche uniforme d'une fonction monogène, Acta Math. 29 (1905), 101181.CrossRefGoogle Scholar
12. Oldham, K. B. and Spanier, J., The fractional calculus (Academic Press, 1974).Google Scholar
13. Ostrovskii, I. V. and Peresyolkova, I. N., Nonasymptotic results on distribution of zeros of the function E ρ(z, μ), Analysis Math. 23 (1997), 283296.CrossRefGoogle Scholar
14. Podlubny, I., Fractional differential equations (Academic Press, 1999).Google Scholar
15. Schneider, W. R., Fractional diffusion, in Dynamics and stochastic processes: theory and applications, Lecture Notes in Physics, Volume 355, pp. 276286 (Springer, 1990).CrossRefGoogle Scholar
16. Schneider, W. R. and Wyss, W., Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), 134144.CrossRefGoogle Scholar
17. Vabishchevich, P. N., Nonlocal parabolic problems and the inverse heat-conduction problem, Diff. Uravn. 17 (1981), 11931199.Google Scholar
18. Wang, R. N., Chen, D. H. and Xiao, T. J., Abstract fractional Cauchy problems with almost sectorial operators, J. Diff. Eqns 252 (2012), 202235.CrossRefGoogle Scholar
19. Wang, J., Wei, W. and Fečkan, M., Nonlocal Cauchy problems for fractional evolution equations involving Volterra–Fredholm type integral operators, Miskolc Math. Notes 13(1) (2012), 127147.Google Scholar
20. Zhou, Y. and Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlin. Analysis 11 (2010), 44654475.CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On fractional heat equations with non-local initial conditions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On fractional heat equations with non-local initial conditions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On fractional heat equations with non-local initial conditions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *