Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-mdtzd Total loading time: 0.236 Render date: 2021-10-16T09:55:14.385Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Mixed Bruce–Roberts numbers

Published online by Cambridge University Press:  27 February 2020

Carles Bivià-Ausina
Affiliation:
Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, València 46022, Spain (carbivia@mat.upv.es)
Maria Aparecida Soares Ruas
Affiliation:
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP13566-590, Brazil (maasruas@icmc.usp.br)

Abstract

We extend the notions of μ*-sequences and Tjurina numbers of functions to the framework of Bruce–Roberts numbers, that is, to pairs formed by the germ at 0 of a complex analytic variety X ⊆ ℂn and a finitely ${\mathcal R}(X)$-determined analytic function germ f : (ℂn, 0) → (ℂ, 0). We analyze some fundamental properties of these numbers.

MSC classification

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ahmed, I., Ruas, M. A. S. and Tomazella, J., Invariants of topological relative right equivalences, Math. Proc. Camb. Philos. Soc. 155(2) (2013), 307315.CrossRefGoogle Scholar
2.Aleksandrov, A. G., Cohomology of a quasi-homogeneous complete intersection, Math. USSR Izv. 26 (1986), 437477.CrossRefGoogle Scholar
3.Briançon, J. and Maynadier-Gervais, H., Sur le nombre de Milnor d'une singularité semi-quasi-homogène, C. R. Math. Acad. Sci. Paris 334(4) (2002), 317320.CrossRefGoogle Scholar
4.Bruce, J. W. and Roberts, R. M., Critical points of functions on analytic varieties, Topology 27(1) (1988), 5790.CrossRefGoogle Scholar
5.Damon, J., Higher multiplicities and almost free divisors and complete intersections, Memoirs of the American Mathematical Society, Volume 123 (American Mathematical Society, Providence, RI, 1996).CrossRefGoogle Scholar
6.Damon, J., On the freeness of equisingular deformations of plane curve singularities, Topology Appl. 118(1–2) (2002), 3143.CrossRefGoogle Scholar
7.Decker, W., Greuel, G.-M., Pfister, G. and Schönemann, H., Singular 4-0-2. A computer algebra system for polynomial computations. Available at http://www.singular.uni-kl.de (2015).Google Scholar
8.Gaffney, T., Multiplicities and equisingularity of icis germs, Invent. Math. 123(1) (1996), 209220.CrossRefGoogle Scholar
9.De Góes Grulha, N. Jr., The Euler obstruction and Bruce–Roberts' Milnor number, Q. J. Math. 60 (2009), 291302.CrossRefGoogle Scholar
10.Giusti, M. and Henry, J.-P. G., Minorations de nombres de Milnor, Bull. Soc. Math. France 108(1) (1980), 1745.CrossRefGoogle Scholar
11.Greuel, G., Der Gauss–Mannin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235266.CrossRefGoogle Scholar
12.Hauser, H. and Müller, G., On the Lie algebra T(X) of vector fields on a singularity, J. Math. Sci. Univ. Tokyo 1(1) (1994), 239250.Google Scholar
13.Hauser, H. and Müller, G., Affine varieties and Lie algebras of vector fields, Manuscripta Math. 80(3) (1993), 309337.CrossRefGoogle Scholar
14.Huneke, C. and Swanson, I., Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, Volume 336 (Cambridge, Cambridge University Press, 2006).Google Scholar
15.Liu, Y., Milnor and Tjurina numbers for hypersurface germs with isolated singularity, C. R. Math. Acad. Sci. Paris 356(9) (2018), 963966.CrossRefGoogle Scholar
16.Looijenga, E. J. N., Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, Volume 77 (Cambridge, Cambridge University Press, 1984).CrossRefGoogle Scholar
17.Nuño-Ballesteros, J. J., Oréfice, B. and Tomazella, J., The Bruce–Roberts number of a function on a weighted homogeneous hypersurface, Q. J. Math. 64(1) (2013), 269280.CrossRefGoogle Scholar
18.Ohmoto, T., Suwa, T. and Yokura, S., A remark on the Chern classes of local complete intersections, Proc. Japan Acad. Ser. A Math. Sci. 73(5) (1997), 9395.CrossRefGoogle Scholar
19.Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 27(5) (1980), 265291.Google Scholar
20.Teissier, B., Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), Astérisque (78) (1973), 285362.Google Scholar
21.Tráng, L. D., Computation of Milnor number of isolated singularity of complete intersection, Funct. Anal. Appl. 8 (1974), 127131.CrossRefGoogle Scholar
22.Wahl, J., Derivations, automorphisms and deformations of quasihomogeneous singularities, in Singularities, Part 2 (Arcata, CA, 1981), Proceedings of Symposia in Pure Mathematics, Volume 40, pp. 613624 (American Mathematical Society, Providence, RI, 1983).CrossRefGoogle Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mixed Bruce–Roberts numbers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mixed Bruce–Roberts numbers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mixed Bruce–Roberts numbers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *