Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-tlg78 Total loading time: 0.381 Render date: 2021-05-13T17:14:05.374Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

OPTIMALITY OF FOUR-THRESHOLD POLICIES IN INVENTORY SYSTEMS WITH CUSTOMER RETURNS AND BORROWING/STORAGE OPTIONS

Published online by Cambridge University Press:  01 January 2005

Eugene A. Feinberg
Affiliation:
Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794-3600, E-mail: Eugene.Feinberg@sunysb.edu
Mark E. Lewis
Affiliation:
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117, E-mail: melewis@engin.umich.edu

Abstract

Consider a single-commodity inventory system in which the demand is modeled by a sequence of independent and identically distributed random variables that can take negative values. Such problems have been studied in the literature under the name cash management and relate to the variations of the on-hand cash balances of financial institutions. The possibility of a negative demand also models product returns in inventory systems. This article studies a model in which, in addition to standard ordering and scrapping decisions seen in the cash management models, the decision-maker can borrow and store some inventory for one period of time. For problems with back orders, zero setup costs, and linear ordering, scrapping, borrowing, and storage costs, we show that an optimal policy has a simple four-threshold structure. These thresholds, in a nondecreasing order, are order-up-to, borrow-up-to, store-down-to, and scrap-down-to levels; that is, if the inventory position is too low, an optimal policy is to order up to a certain level and then borrow up to a higher level. Analogously, if the inventory position is too high, the optimal decision is to reduce the inventory to a certain point, after which one should store some of the inventory down to a lower threshold. This structure holds for the finite and infinite horizon discounted expected cost criteria and for the average cost per unit time criterion. We also provide sufficient conditions when the borrowing and storage options should not be used. In order to prove our results for average costs per unit time, we establish sufficient conditions when the optimality equations hold for a Markov decision process with an uncountable state space, noncompact action sets, and unbounded costs.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Aneja, Y. & Noori, A.H. (1987). The optimality of (s, s) policies for a stochastic inventory problem with proportional and lump-sum penalty cost. Management Science 33(6): 750755.Google Scholar
Arrow, K.J., Harris, T., & Marshcak, J. (1951). Optimal inventory policy, Econometrica 53(6): 250272.Google Scholar
Arslan, H., Ayhan, H., & Olsen, T.L. (2001). Analytic models for when and how to expedite in make-to-order systems. IIE Transactions 33(11): 10191029.Google Scholar
Barankin, E. (1961). A delivery-lag inventory model with an emergency provision. Naval Research Logistics Quarterly 8: 285311.Google Scholar
Bertsekas, D.P. (1995). Dynamic programming and optimal control, Vol. 2. Belmont, MA: Athena Scientific.
Bertsekas, D.P. (2000). Dynamic programming and optimal control, Vol. 1, 2nd ed. Belmont, MA: Athena Scientific.
Bertsekas, D.P. & Shreve, S.E. (1996). Stochastic optimal control: The discrete-time case. Belmont, MA: Athena Scientific.
Cavazos-Cadena, R. & Sennott, L.I. (1992). Comparing recent assumptions for the existence of average optimal stationary policies. Operations Research Letters 11: 3337.Google Scholar
Chen, X. & Simchi-Levi, D. (2004) A new approach for the stochastic cash balance problem with fixed costs. Preprint.
Chiang, C. & Gutierrez, G.J. (1996). A periodic review inventory system with two supply modes. European Journal of Operational Research 94(3): 527547.Google Scholar
Chiang, C. & Gutierrez, G.J. (1998). Optimal control policies for a periodic review inventory system with emergency orders. Naval Research Logistics Quarterly 45: 187204.Google Scholar
Constantinides, G.M. & Richard, S.F. (1978). Existence of optimal simple policies for discounted cost inventory and cash management in continuous time. Operations Research 26(4): 620636.Google Scholar
Daniel, K. (1963). A delivery-lag inventory model with emergency. In H.E. Scarf, D.M. Gilford, & M.W. Shelly (eds.), Multistage Inventory Models and Techniques. Stanford, CA: Stanford University Press, pp. 3246.
Dynkin, E. & Yushkevich, A.A. (1979). Controlled Markov processes. New York: Springer-Verlag.CrossRef
Elton, E.J. & Gruber, M.J. (1974). On the cash balance problem. Operational Research Quarterly 25(4): 553572.Google Scholar
Eppen, G.D. & Fama, E.F. (1969). Cash balance and simple dynamic portfolio problems with proportional costs. International Economic Review 10(2): 119133.Google Scholar
Feinberg, E.A. & Shwartz, A. (eds.). (2002). Handbook of Markov decision processes: Methods and applications. Boston: Kluwer.
Fernández-Gaucherand, E. (1994). A note on the Ross–Taylor theorem. Applied Mathematics and Computation 64(2–3): 207212.Google Scholar
Fernández-Gaucherand, E., Arapostathis, A., & Marcus, S.I. (1992). Convex stochastic control problems. In Proceedings of the 31st Conference on Decision and Control, pp. 21792180.CrossRef
Fleischmann, M., Kuik, R., & Dekker, R. (2002). Controlling inventories with stochastic item returns: A basic model. European Journal of Operational Research 138: 6375.Google Scholar
Girgis, N.M. (1968). Optimal cash balance levels. Management Science 15(3): 130140.Google Scholar
Gubenko, L. & Statland, E. (1975). On controlled discrete-time Markov decision processes. Theory Probability and Mathematical Statistics 7: 4761.Google Scholar
Harris, T. (1913). How many parts to make at once. Factory, the Magazine of Management 10: 135–136, 152.Google Scholar
Hartley, R. (1980). Dynamic programming and an undiscounted, infinite horizon, convex stochastic control problem. In R. Hartley, L. Thomas, & D. White (eds.), Recent developments in Markov decision processes. London: Academic Press, pp. 277300.
Hernández-Lerma, O. & Lasserre, J.B. (1996). Discrete-time Markov control processes: Basic optimality criteria. New York: Springer-Verlag.
Heyman, D.P. (1977). Optimal disposal policies for a single-item inventory system with returns. Naval Research Logistics Quarterly 24: 385405.Google Scholar
Heyman, D.P. & Sobel, M.J. (1984). Stochastic models in operations research, Vol. II. New York: McGraw-Hill.
Hinderer, K. & Waldmann, K-H. (2001). Cash management in a randomly varying environment. European Journal of Operational Research 130: 468485.Google Scholar
Huggins, E.L. & Olsen, T.L. (2003). Inventory control with overtime and premium freight. Preprint.
Neave, E.H. (1970). The stochastic cash balance problem with fixed costs for increases and decreases. Management Science 16(7): 472490.Google Scholar
Neuts, M. (1964). An inventory model with optional lag time. SIAM Journal of Applied Mathematics 12: 179185.Google Scholar
Porteus, E. (1990). Stochastic inventory theory. In D. Heyman & M. Sobel (eds.), Handbooks in operations research and management science, Vol. 2. Amsterdam: Elsevier Science Publishers, pp. 605652.
Puterman, M.L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.CrossRef
Ritt, R. & Sennott, L. (1992). Optimal stationary policies in general state Markov decision chains with finite action sets. Mathematics of Operations Research 17: 901909.Google Scholar
Ross, S. (1968). Arbitrary state Markovian decision processes. Annals of Mathematical Statistics 39: 21182122.Google Scholar
Ross, S. (1983). Introduction to stochastic dynamic programming. New York: Academic Press.
Schäl, M. (1993). Average optimality in dynamic programming with general state space. Mathematics of Operations Research 18: 163172.Google Scholar
Serfozo, R. (1982). Convergence of Lebesgue integrals with varying measures. Sankhya Series A 44: 380402.Google Scholar
Strauch, R.E. (1966). Negative dynamic programming. Annals of Mathematical Statistics 37: 871890.Google Scholar
Tagaras, G. & Vlachos, D. (2001). A periodic review inventory system with emergency replenishments. Management Science 47(3): 415429.Google Scholar
van der Laan, E. & Salomon, M. (1997). Production planning and inventory control with remanufacturing and disposal. European Journal of Operational Research 102: 264278.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

OPTIMALITY OF FOUR-THRESHOLD POLICIES IN INVENTORY SYSTEMS WITH CUSTOMER RETURNS AND BORROWING/STORAGE OPTIONS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

OPTIMALITY OF FOUR-THRESHOLD POLICIES IN INVENTORY SYSTEMS WITH CUSTOMER RETURNS AND BORROWING/STORAGE OPTIONS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

OPTIMALITY OF FOUR-THRESHOLD POLICIES IN INVENTORY SYSTEMS WITH CUSTOMER RETURNS AND BORROWING/STORAGE OPTIONS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *