Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T02:33:50.762Z Has data issue: false hasContentIssue false

X-Ray Powder Diffraction Study of the Tungsten Bronze Type Barium Sodium Niobates

Published online by Cambridge University Press:  10 January 2013

M. Shimazu
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-Shi, Ibaraki 305, Japan
Y. Kubota
Affiliation:
Institute of Earth Science, School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-Ku, Tokyo 160, Japan
T. Wada
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-Shi, Ibaraki 305, Japan
S. Tsutsumi
Affiliation:
Institute of Earth Science, School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-Ku, Tokyo 160, Japan

Abstract

Ba2NaNb5,O15 and eighteen additional compositions in the NaNbO3-BaNb2O6 system from 60 to 85 mole % BaNb2O6 have been prepared and studied by X-ray powder diffraction. A calculated pattern has been used to aid in indexing the powder pattern of stoichiometric Ba2NaNb5O15(BNN-S). The lattice parameters of BNN-S have been determined from repeated measurements of 2 higher order reflections and are a=b=17.5994(8)Å and c=7.9771(9)Å. A comparison with the Powder Diffraction File (PDF) 34-210 indicates that the present data provide a more precise match to the unit cell, include additional weak reflections and cover a greater 2θ range. There is a tungsten bronzetype solid solution range from 60 to 75 mole % BaNb2O6.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barraclough, K.G., Harris, I.R., Cockayne, G., Plant, J.G. & Vere, A.W. (1970). J. Mater. Sci. 5, 389393.CrossRefGoogle Scholar
Carruthers, J.R. & Grasso, M. (1969). Mater. Res. Bull. 4, 413424.CrossRefGoogle Scholar
Giess, E.A., Scott, B.A., Olson, B.L., Burns, G. & O'Kane, D.F. (1970). J. Am. Ceram. Soc. 53(1), 1417.CrossRefGoogle Scholar
Glasso, F., Layden, G. & Ganung, G. (1968). Mater. Res. Bull. 3, 397408.CrossRefGoogle Scholar
Hubbard, C.R. (1982). Standard Reference Material 640a, Si powder. J. Appl. Crystallogr. 16, 285.CrossRefGoogle Scholar
Jamieson, P.B., Abrahams, S.C. & Bernstein, J.L. (1969). J. Chem. Phys. 50, 43524363.CrossRefGoogle Scholar
Kova, L.M., Lykova, L.N., Kulikova, Z. Ya., Leshchenko, P.P. & Zapasskaya, I.P. (1979). Vestn. Mosk. Univ. Ser. 2:Khim. 33(3), 320323.Google Scholar
Lee, J.D. & Pakes, H.W. (1969). Acta Crystallogr. A25, 712713.CrossRefGoogle Scholar
Morris, M.C., McMurdie, H.F., Evans, E.H., Paretzkin, B.P., Parker, H.S., Pyrros, N.P. and Hubbard, C.R. (1984). Natl. Bur. Stand. (U.S.) Monogr. 25(20), 83.Google Scholar
Powder Diffraction File (1989). Swarthmore, PA: International Centre for Diffraction Data.Google Scholar
Scott, B.A., Giess, E. A. & O'Kane, (1969). Mater. Res. Bull. 4, 107118.,CrossRefGoogle Scholar
Yamaguchi, O., Matsui, K. & Shimizu, K. (1968). J. Am. Ceram. Soc. 68, C173–C175.Google Scholar