Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T21:51:46.227Z Has data issue: false hasContentIssue false

Synthesis, crystal structure, and vibrational studies of the monoclinically distorted double perovskite, Sr2Mn1−xNixTeO6 with (x = 0.25, 0.5, and 0.75)

Published online by Cambridge University Press:  22 May 2019

A. Zaraq*
Affiliation:
Laboratoire de Physico-Chimie des Matériaux Appliqués (LPCMA), Université Hassan II de Casablanca, Faculté des Sciences Ben M'sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
B. Orayech
Affiliation:
Maxam, Technology Center Energetic Materials, Carretera N-623 km 28. 09141 Quintanilla Sobresierra. Burgos, Spain
J. M. Igartua
Affiliation:
Fisika Aplikatua II Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, P.O.Box 644, Bilbao 48080, Spain
A. El Bouari
Affiliation:
Laboratoire de Physico-Chimie des Matériaux Appliqués (LPCMA), Université Hassan II de Casablanca, Faculté des Sciences Ben M'sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
*
a)Author to whom correspondence should be addressed. Electronic mail: assmaa.zaraq@gmail.com

Abstract

The new double perovskite oxides Sr2Mn1−xNixTeO6 with x = 0.25, 0.5 and 0.75 have been synthesized in polycrystalline form by a conventional solid-state reactions process at 1180 °C, in the air. The structural and vibrational properties of these materials were studied by means XRPD, Raman, and IR spectroscopy. It has been proven that all the materials show typical double perovskite structures with a monoclinic symmetry, but with two different space group, P21/n for the compositions (x = 0.25 and 0.5), while the composition (x = 0.75) crystallizes in the space group I2/m. The lattice parameters obtained are in agreement with those of the two pure extremes Sr2MnTeO6 and Sr2NiTeO6. The monoclinic structural distortion involves long range ordering between Te6+ (in 2b site) and a random mixture (Mn2+/Ni2+) (in 2a site) for the two compositions (x = 0.25 and 0.5) that crystallize in P21/n. For the material (x = 0.75) with I2/m, similar distortion, ordering and mixing occur at the B and B’ double perovskite sites. It was observed that Vegard Law is satisfied, taking into account the cell parameters of both extremes. The effect of the partial substitution of Mn by Ni was also seen in Raman and IR data where a significant mode shift was observed with nickel content increase.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, A. P., Guedes, I., Silva, E. N., Augsburger, M. S., del C. Viola, M., and Pedregosa, J. C. (2007). “Raman investigation of A2CoBO6 (A = Sr and Ca, B = Te and W) double perovskites,” J. Appl. Phys. 101, 123511.Google Scholar
Azad, A.K., Eriksson, S.-G., Rundlöf, H., and Eriksen, J. (2004). “Synthesis and crystal structure of the double perovskite Ca2−xSrxMnWO6 (x = 0.0, 0.5, 1.0, 1.5, 2.0),” Mater. Sci. Forum. 443–444, 375378.Google Scholar
Bernardo, P. L., Ghivelder, L., Eslava, G. G., Amorim, H. S., Felner, I., and Garcia, S. (2014). “Monoclinic distortion and magnetic coupling in the double perovskite Sr2−xCaxYRuO6,” J. Solid State Chem. 220, 270276.Google Scholar
Cecilia Blanco, M., De Paoli, J. M., Ceppi, S., Tirao, G., Nassif, V. M., Guimpel, J., and Carbonio, R. E. (2014). “Synthesis, structural characterization and magnetic properties of the monoclinic ordered double perovskites BaLaMSbO6, with M = Mn, Co and Ni,” J. Alloys Compd. 606, 139148.Google Scholar
Gandhi, A., and Keshri, S. (2015). “Microwave dielectric properties of double perovskite ceramics Ba2Zn1-xCaxWO6 (x = 0–0.4),” Ceram. Int. 41, 36933700.Google Scholar
Ghimire, M. P., Kaphle, G. C., and Thapa, R. K. (2016). “Electronic and magnetic properties of double perovskites Nd2MgIrO6,” J Nepal Phys. Soc. 3, 50.Google Scholar
Glazer, A. M. (1975). “Simple ways of determining perovskite structures,” Acta Crystallogr. A31, 756.Google Scholar
Halder, A., Nafday, D., Sanyal, P., and Saha-Dasgupta, T. (2018). “Computer predictions on Rh-based double perovskites with unusual electronic and magnetic properties,” npj. Qautum Materials 3, 17.Google Scholar
Knapp, M. C., and Woodward, P. M. (2006). “A-site cation ordering in AA'BB'O6 perovskites,” J. Solid State Chem. 179, 10761085.Google Scholar
Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S.; Wondratschek, H. (2003). “Bilbao Crystallographic Server: useful databases and tools for phase-transition studies,” Phase Transit. 76, 155. http://www.cryst.ehu.es /.Google Scholar
Li, Z., Cho, Y., Li, X., Li, X., Aimi, A., Inaguma, Y., Antonio Alonso, J., Teresa Fernandez-Diaz, M., Yan, J., Downer, M. C., Henkelman, G., Goodenough, J. B., and Zhou, J. (2018). “New mechanism for ferroelectricity in the perovskite Ca2−xMnxTi2O6 synthesized by spark plasma sintering,” J. Am. Chem. Soc. 140, 22142220.Google Scholar
Manoun, B., Ezzahi, A., Benmokhtar, S., Ider, A., Lazor, P., Bih, L., and Igartua, J. M. (2012). “X-ray diffraction and Raman spectroscopy studies of temperature and composition induced phase transitions in Ba2−xSrxZnWO6 (0 ≤ x ≤ 2) double perovskite oxides,” J. AlloysCompd. 533, 4352.Google Scholar
Mugavero, S. J., Puzdrjakova, I. V., Smith, M. D., and zur Loye, H. C. (2005). “Sm2nairo6, a monoclinically distorted double perovskite,” Acta Crystallogr. E61, i3i5.Google Scholar
Musa Saad, H.-E. M. (2014). “DFT-FPLMTO study of electronic and magnetic structures of half-metallic antiferromagnetic complex perovskite Ba2CoWO6,” Comput. Condens. Matter. 1, 1418.Google Scholar
Ochi, M., Yamada, I., Ohgushi, K., Kusano, Y., Mizumaki, M., Takahashi, R., Yagi, S., Nishiyama, N., Inoue, T., and Irifune, T. (2013). “B-site deficiencies in A-site-ordered perovskite LaCu3Pt3.75O12,” Inorg. Chem. 52, 39853989.Google Scholar
Orayech, B., Ortega-San-Martín, L., Urcelay-Olabarria, I., Lezama, L., Rojo, T., Arriortua, M. I., and Igartuag, J. M. (2015). “Structural phase transitions and magnetic and spectroscopic properties of the double perovskites Sr2Co1−xMgxTeO6 (x = 0.1, 0.2 and 0.5),” Dalton Trans. 44, 13716.Google Scholar
Ortega-San Martin, L., Chapman, J. P., Hernandez Bocanegra, E., Insausti, M., Arriortua, M. I., and Rojo, T. (2004). “Structural phase transitions in the ordered double perovskite Sr2MnTeO6,” J. Phys.: Condens. Matter. 16, 38793888.Google Scholar
Ortega-San Martin, L., Chapman, J. P., Cuello, G., Gonzalez-Calbet, J., Arriortua, M. I., and Rojo, T. (2005a). “Crystal structure of the ordered double perovskite, Sr2NiTeO6,” Z. Anorg. Allg. Chem. 631, 21272130.Google Scholar
Ortega-San Martin, L., Chapman, J. P., Lezama, L., Sanchez-Marcos, J., Rodriguez-Fernandez, J., Isabel Arriortuab, M., and Rojo, T. (2005b). “Factors determining the effect of Co(II) in the ordered double perovskite structure: sr2CoTeO6,” J. Mater. Chem. 15, 183193.Google Scholar
Pena, M. A., and Fierro, J. L. G. (2001). “Chemical structures and performance of perovskite oxides,” Chem. Rev. 101, 19812017.Google Scholar
Prior, T. J., Couper, V. J., and Battle, P. D. (2005). “Structural chemistry of the cation-ordered perovskites Sr2CaMo1−xTexO6 (0 ≤ x ≤ 1),” J. Solid State Chem. 178, 153157.Google Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS), Saclay, France.Google Scholar
Roisnel, T., and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a Windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum. 378–381, 118123.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A32, 75.Google Scholar
Tamraoui, Y., Manoun, B., Mirinioui, F., Haloui, R., and Lazor, P. (2014). “X-ray diffraction and Raman spectroscopy studies of temperature and composition induced phase transitions in Ba2−xSrxMgTeO6 (0 ≤ x ≤ 2),” J. Alloys Compd. 603, 8694.Google Scholar
Tang, Y., Hunter, E. C., Battle, P. D., Sena, R. P., Hadermann, J., Avdeev, M., and Cadogan, J. M. (2016). “Structural chemistry and magnetic properties of the perovskite Sr3Fe2TeO9,” J. Solid State Chem. 242, 8695.Google Scholar
Tang, Y., Sena, R. P., Avdeev, M., Battle, P. D., Cadogan, J. M., Hadermann, J., and Hunter, E. C. (2017). “Magnetic properties of the 6H perovskite Ba3Fe2TeO9,” J. Solid State Chem. 253, 347354.Google Scholar
Tasca, J. E., Lavata, A. E., and Gloria González, M. (2017). “Double perovskites La2MMnO6 as catalyst for propane combustion,” J. Asian Ceram. Soc. 5, 235241.Google Scholar
Venevtsev, Y. N., Politova, E. D., and Zhdanov, G. S. (1974). “Tellurium containing ferroelectrics: X-ray data, dielectric properties, phase transitions,” Ferroelectrics 8, 489490.Google Scholar
Zamkova, N. G., Zhandun, V. S., and Zinenko, V. I. (2013). “First principles calculations of ferroelectric properties in AA'BB'O6 double perovskites with different types of cation ordering,” Phys. Status Solidi B., 110.Google Scholar
Zaraq, A., Orayech, B., Faik, A., Igartua, J. M., Jouanneaux, A., and El Bouari, A. (2016). “High temperature induced phase transitions in SrCaCoTeO6 and SrCaNiTeO6 ordered double perovskites,” Polyhedron 110, 119124.Google Scholar
Supplementary material: File

Zaraq et al. supplementary material

Zaraq et al. supplementary material 1

Download Zaraq et al. supplementary material(File)
File 337.4 KB