Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T11:58:33.824Z Has data issue: false hasContentIssue false

Structure analysis of CaTi1−xSnxO3 (x = 0.0–1.0) solid solutions

Published online by Cambridge University Press:  15 April 2014

Naoki Takani
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Hisanori Yamane*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: yamane@tagen.tohoku.ac.jp

Abstract

CaTi1−xSnxO3 (x = 0.0–1.0) solid solutions were prepared by solid-state reaction at 1450 °C. Rietveld refinement of their powder X-ray diffraction patterns revealed that all the solid solutions crystallized in orthorhombic cells with the perovskite-type structure, the space group Pbnm. The refined unit-cell parameters linearly increased with nominal tin contents x.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N. E and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.Google Scholar
Coffeen, W. W. (1953). “Ceramic and dielectric properties of the stannates,” J. Am. Ceram. Soc. 36, 207214.Google Scholar
Isaeva, V. F., Lifshits, Y. A., Fridberg, I. D., and Cherkudinov, A. S. (1972). “Systems of oxides used in electrical ceramics and their properties at high frequencies,” Vysokotemp. Khim. Silikat. Okislov, Tr. Vses. Soveshch. 3, 112116.Google Scholar
Izumi, F. and Momma, K. (2007). “Three-dimensional visualization in power diffraction,” Solid State Phenom. 130, 1520.CrossRefGoogle Scholar
Jancar, B., Suvorov, D., Valant, M., and Drazic, G. (2003). “Characterization of CaTiO3–NdAlO3 dielectric ceramics,” J. Eur. Ceram. Soc. 23, 13911400.Google Scholar
Mandal, K. D., Sastry, M. S., and Parkash, O. (1995). “Preparation and characterization of calcium stannate,” J. Mater. Sci. Lett. 14, 14121413.CrossRefGoogle Scholar
Mitchell, R. H. and Liferovich, R. P. (2004). “A structural study of the perovskite series Ca1−x Na x Ti1−x Ta x O3 ,” J. Solid State Chem. 177, 44204427.Google Scholar
Momma, K. and Izumi, F. (2008). “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr. 41, 653658.CrossRefGoogle Scholar
Park, M., Mitchell, T. E., and Heuer, A. H. (1975). “Subsolidus equilibria in the TiO2–SnO2 system,” J. Am. Ceram. Soc. 58, 4347.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,”Acta Crystallogr. A 32, 751767.Google Scholar
Vegas, A., Vallet-Regí, M., González-Calbet, J. M., and Alario-Franco, M. A. (1986). “The ASnO3 (A = Ca, Sr) perovskites” Acta Crystallogr. B 42, 167172.Google Scholar
Yamane, H. and Kawano, T. (2011). “Preparation, crystal structure and photoluminescence of garnet-type calcium tin titanium aluminates,” J. Solid State Chem. 184, 965970.Google Scholar
Zhao, J., Ross, N. L., and Angel, R. J. (2004). “Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction,” Phys. Chem. Miner. 31, 299305.Google Scholar
Zhao, Y., Weidner, D. J., Parise, J. B., and Cox, D. E. (1993). “Thermal expansion and structural distortion of perovskite – data for NaMgF3 perovskite. Part I,” Phys. Earth Planet. Inter. 76, 116.Google Scholar
Supplementary material: File

Takani Supplementary Material

Takani Supplementary Material

Download Takani Supplementary Material(File)
File 6.9 KB