Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T12:12:48.017Z Has data issue: false hasContentIssue false

In situ diffraction studies of iron ore sinter bonding phase formation: QPA considerations and pushing the limits of laboratory data collection

Published online by Cambridge University Press:  17 November 2014

Nathan A. S. Webster*
Affiliation:
CSIRO Mineral Resources Flagship, Private Bag 10, Clayton South, VIC 3169, Australia Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Mark I. Pownceby
Affiliation:
CSIRO Mineral Resources Flagship, Private Bag 10, Clayton South, VIC 3169, Australia
Ian C. Madsen
Affiliation:
CSIRO Mineral Resources Flagship, Private Bag 10, Clayton South, VIC 3169, Australia
Andrew J. Studer
Affiliation:
Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Justin A. Kimpton
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: nathan.webster@csiro.au

Abstract

The formation and decomposition of silico-ferrite of calcium and aluminium (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using in situ synchrotron and laboratory X-ray diffraction (XRD) and neutron diffraction (ND). An external standard approach for determining absolute phase concentrations via Rietveld refinement-based quantitative phase analysis is discussed. The complementarity of in situ XRD and ND in characterising sinter phase formation and decomposition is also shown, with the volume diffraction afforded by the neutron technique reducing errors in the quantification of magnetite above ~1200 °C. Finally, by collecting 6 s laboratory XRD datasets and using a heating rate of 175 °C min−1, phase formation and decomposition have been monitored under heating rates more closely approximating those encountered in industrial iron ore sintering.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berastegui, P., Eriksson, S. -G., and Hull, S. (1999). “A neutron diffraction study of the temperature dependence of Ca2Fe2O5,” Mater. Res. Bull. 34, 303314.Google Scholar
Blake, R., Hessevick, R., Zoltai, T., and Finger, L. (1966). “Refinement of the hematite structure,” Am. Mineral. 51, 123129.Google Scholar
Bruker (2009). TOPAS. Version 4.2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Dawson, P. R., Ostwald, J., and Hayes, K. M. (1985). “Influence of alumina on the development of complex calcium ferrites in iron ore sinters,” T. I. Min. Metall. C 94, 7178.Google Scholar
Decker, D. F. and Kasper, J. S. (1957). “The structure of calcium ferrite,” Acta Crystallogr. 10, 332337.Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J. Appl. Crystallogr. 19, 267272.Google Scholar
Hamilton, W. C. (1958). “Neutron diffraction investigation of the 119 K transition in magnetite,” Phys. Rev. 110, 10501057.Google Scholar
Hamilton, J. D. G., Hoskins, B. F., Mumme, W. G., Borbidge, W. E., and Montague, M. A. (1989). “The crystal structure and crystal chemistry of Ca2.3Mg0.8Al1.5Si1.1Fe8.3O20 (SFCA): solid solution limits and phase relationships of SFCA in the SiO2–Fe2O3–CaO(–Al2O3) system,” Neues Jahrb. Miner. Abh. 161, 126.Google Scholar
Hill, R. J. and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. 20, 467474.Google Scholar
Lager, G. A., Jorgensen, J. D., and Rotella, F. J. (1982). “Crystal structure and thermal expansion of α-quartz SiO2 at low temperature,” J. Appl. Phys. 53, 67516756.Google Scholar
Louisnathan, S. J. (1971). “Refinement of the crystal structure of a natural gehlenite, Ca2Al(Al,Si)2O7,” Can. Mineral. 10, 822837.Google Scholar
Madsen, I. C., Grey, I. E., and Mills, S. (2010). “In situ diffraction studies: thermal decomposition of a natural plumbojarosite and the development of Rietveld-based data analysis techniques,” Mater. Sci. Forum 651, 3764.Google Scholar
Maslen, E. N., Strel'tsov, V. A., Strel'tsova, N. R., and Ishizawa, N. (1995). “Electron density and optical anisotrophy in rhombohedral carbonates.III.Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3,” Acta Crystallogr. B 51, 929939.Google Scholar
Mumme, W. G., Clout, J. M. F., and Gable, R. W. (1998). “The crystal structure of SFCA-I, Ca3.18Fe3+14.66Al1.34Fe2+0.82O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of β-CFF, Ca2.99Fe3+14.30Fe2+0.55O25 and Mg-free SFCA, Ca2.45Fe3+9.04Al1.74Fe2+0.16Si0.6O20,” Neues Jahrb. Miner. Abh. 173, 93117.Google Scholar
Oftedal, I. (1927). “Die Gitterkonstanten von CaO, CaS, CaSe, CaTe,” Z. Phys. Chem. 128, 135158.Google Scholar
Patrick, T. R. C. and Pownceby, M. I. (2001). “Stability of SFCA (silico-ferrite of calcium and aluminium) in air: solid solution limits between 1240°C and 1390°C and phase relationships within the Fe2O3–CaO–Al2O3–SiO2 (FCAS) system,” Metall. Mater. Trans. B 32, 111.Google Scholar
Saalfeld, H. and Wedde, M. (1974). “Refinement of the crystal structure of gibbsite, Al(OH)3,” Z. Krystallogr. Krist. 139, 129135.Google Scholar
Scarlett, N. V. Y., Madsen, I. C., Pownceby, M. I., and Christensen, A. (2004a). “In situ X-ray diffraction analysis of iron ore sinter phases,” J. Appl. Crystallogr. 37, 362–68.Google Scholar
Scarlett, N. V. Y., Pownceby, M. I., Madsen, I. C., and Christensen, A. (2004b). “Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter,” Metall. Mater. Trans. B 35, 929–36.Google Scholar
Schulz, H. and Tscherry, V. (1972). “Structural relations between the low- and high-temperature forms of β-eucryptite (LiAlSiO4) and low and high quartz. I. Low-temperature form of β-eucryptite and low quartz,” Acta Cryst. B, Struct. 28, 21682173.Google Scholar
Stinton, G. W. and Evans, J. S. O. (2007). “Parametric Rietveld refinement,” J. Appl. Crystallogr. 40, 8795.Google Scholar
Webster, N. A. S., Madsen, I. C., Loan, M. J., Knott, R. B., Naim, F., Wallwork, K. S., and Kimpton, J. A. (2010). “An investigation of goethite-seeded Al(OH)3 precipitation using in situ X-ray diffraction and Rietveld-based quantitative phase analysis,” J. Appl. Crystallogr. 43, 466472.Google Scholar
Webster, N. A. S., Pownceby, M. I., Madsen, I. C., and Kimpton, J. A. (2012). “Silico-ferrite of calcium and aluminium (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling,” Metall. Mater. Trans. B 43, 13441357.Google Scholar
Webster, N. A. S., Pownceby, M. I., Madsen, I. C., and Kimpton, J. A. (2013a). “Effect of oxygen partial pressure on the formation mechanisms of complex Ca-rich ferrites,” ISIJ Int. 53, 774781.Google Scholar
Webster, N. A. S., Pownceby, M. I., and Madsen, I. C. (2013b). “In situ X-ray diffraction investigation of the formation mechanisms of silico-ferrite of calcium and aluminium-I-type complex calcium ferrites,” ISIJ Int. 53, 13341340.Google Scholar
Webster, N. A. S., Pownceby, M. I., Madsen, I. C., Studer, A. J., Manuel, J. R., and Kimpton, J. A. (2014). “Fundamentals of SFCA (silico-ferrite of calcium and aluminium) and SFCA-I iron ore sinter bonding phase formation: effects of CaO:SiO2 ratio,” Metall. Mater. Trans. B, Doi: 10.1007/s11663-014-0137-5.Google Scholar