Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:46:40.825Z Has data issue: false hasContentIssue false

Crystal structure of the ternary semiconductor Cu2In14/34/3Se8 determined by X-ray powder diffraction data

Published online by Cambridge University Press:  19 September 2018

Gerzon E. Delgado*
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Luigi Manfredy
Affiliation:
Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
S. A. López-Rivera*
Affiliation:
Grupo de Física Aplicada, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
*
a)Author to whom correspondence should be addressed. Electronic mail: gerzon@ula.ve and adan@ula.ve
a)Author to whom correspondence should be addressed. Electronic mail: gerzon@ula.ve and adan@ula.ve

Abstract

The crystal structure of the partially ordered vacancy compound Cu2In14/34/3Se8, belonging to the system I3-III7-□2-VI12, was analyzed using X-ray powder diffraction data. Several structural models were derived from the structure of the selenium-rich phase β-Cu0.39In1.2Se2 by permuting the cations in the available Wyckoff positions. The refinement of the best model by the Rietveld method in the tetragonal space group P$\overline 4 $ 2c (No 112), with unit-cell parameters a = 5.7487(3) Å, c = 11.5106(6) Å, V = 380.40(3) Å3, led to Rp = 9.0%, Rwp = 9.9%, Rexp = 7.2%, S = 1.4 for 134 independent reflections. This model has the following Wyckoff site atomic distribution: Cu in 2e (0,0,0); In in 2b (½,0,¼), 2d (0,½,¼), and 2f (½,½,0);□ in 2f (½,½,0); Se in 8n (x,y,z).

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B47, 192197.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B41, 244247.Google Scholar
Cagliotti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3, 223228.Google Scholar
Choi, S. G., Donohue, A. L., Marcano, G., Rincón, C., Gedvilas, L. M., Li, J., and Delgado, G. E. (2013). “Optical properties of cubic-phase Cu2GeSe4 single crystal,” J. Appl. Phys. 114, 033531.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Delgado, G. E. and Sagredo, V. (2016). “The crystal structure of the new diamond-like semiconductor CuMn2InSe4”. Bull. Mater. Sci. 39, 16311634.Google Scholar
Delgado, G. E., Mora, A. J., Marcano, G., and Rincón, C. (2003). “Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data,” Mater. Res. Bull. 38, 19491955.Google Scholar
Delgado, G. E., Mora, A. J., Grima-Gallardo, P., and Quintero, M. (2008). “Crystal structure of CuFe2InSe4 from X-ray powder diffraction,” J. Alloys Compd. 454, 306309.Google Scholar
Delgado, G. E., Mora, A. J., Contreras, J. E., Grima-Gallardo, P., Durán, S., Muñoz, M., and Quintero, M. (2009). “Crystal structure characterization of the quaternary compounds CuFeAlSe3 and CuFeGaSe3,” Cryst. Res. Technol. 44, 548552.Google Scholar
Delgado, G. E., Mora, A. J., Grima-Gallardo, P., Durán, S., Muñoz, M., and Quintero, M. (2010). “Preparation and crystal structure analysis of CuNiGaSe3 and CuNiInSe3 quaternary compounds,” Bull. Mater. Sci. 33, 637640.Google Scholar
Delgado, G. E., Mora, A. J., Grima, P., Muñoz, M., Durán, S., Quintero, M., and Briceño, J. M. (2015). “Crystal structure of the quaternary compounds CuFe2AlSe4 and CuFe2GaSe4 from X-ray powder diffraction,” Bull. Mater. Sci. 38, 10611064.Google Scholar
Delgado, G. E., Grima-Gallardo, P., and Quintero, M. (2016). “Synthesis and crystal structure of three new quaternary compounds in the system (Cu-III-Se2)1−X-ZnSeX (III = Al, Ga, In), formed by Zn incorporation in Cu-III-Se2 chalcopyrites,” Rev. Mex. Fís. 62, 393397.Google Scholar
Feaeheiley, M. L. (1986). “The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals,” Solar Cells 16, 91100.Google Scholar
Gulay, L. D., Ivashchenko, I. A., Zmiy, O. F., and Olekseyuk, I. D. (2004). “Crystal structure of the CuIn7Se11 compound,” J. Alloys Compd. 384, 121124.Google Scholar
Höenle, W., Kuehn, G., and Boehnke, U. C. (1988). “Crystal structures of two quenehed Cu-In-Se phases,” Cryst. Res. Technol. 23, 13471354.Google Scholar
ICDD (2017). PDF-4 + 2018 (Database), edited by Dr. Kabekkodu, Soorya (International Centre for Diffraction Data, Newtown Square, PA, USA).Google Scholar
ICSD (2008). Inorganic Crystal Structure Database (Set 2008–1) (Gemlin Institute, Kalrsruhe, Germany).Google Scholar
Knight, K. S. (1992). “The crystal structures of CuInSe2 and CuInTe2,” Mater. Res. Bull. 27, 161167.Google Scholar
Marín, G., Tauleigne, S., Wasim, S. M., Guevara, R., Delgado, J. M., Rincón, C., Mora, A. E., and Sánchez Pérez, G. (1998). “X-ray powder diffraction and optical characterization of the Cu(In1−XGaX)3Se5 semiconducting system,” Mater. Res. Bull. 33, 10571068.Google Scholar
Merino, J. M., Mahanty, S., León, M., Díaz, R., Rueda, F., and Martín de Vidales, J. L. (2000). “Structural characterization of CuIn2Se3.5, CuIn3Se5 and CuIn5Se8 compounds,” Thin Solid Films 361–362, 7073.Google Scholar
Merino, J. M., Di Michiel, M., and León, M. (2003). “Structural analysis of CuInSe2 and CuIn3Se5 at different temperatures with synchrotron radiation,” J. Phys. Chem. Solids 64, 16491652.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS'AIDS: A Fortran program for crystallographic data evaluation. National Bureau of Standards (USA), Technical Note 1141.Google Scholar
Mora, A. J., Delgado, G. E., and Grima-Gallardo, P. (2007). “Crystal structure of CuFeInSe3 from X-ray powder diffraction data,” Phys. Status Solidi (a) 204, 547554.Google Scholar
Negami, T., Kohara, N., Nishitani, M., and Wada, T. (1994). “Preparation of ordered vacancy chalcopyrite-type CuIn3Se5 thin films.” Jpn. J. Appl. Phys. 33, L1251L1253.Google Scholar
Parthé, E. (1995). “Wurtzite and zinc-blende structures,” in Intermetallic Compounds, Principles and Applications, edited by Westbrook, J. H. and Fleischer, R. L. (Jhon Wiley & Sons, Chichester, UK), Vol. 1, pp. 343362.Google Scholar
Paszkowicz, W., Lewandowska, R., and Bacewicz, R. (2004). Rietveld refinement for CuInSe2 and CuIn3Se5,” J. Alloys Compd. 362, 241247.Google Scholar
Pauling, L. and Brockway, L. O. (1932). “The crystal structure of chalcopyrite,” Z. Kristallogr. 82, 188194.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Rincón, C., Wasim, S. M., Marin, G., Marquez, R., Nieves, L., and Sánchez Pérez, G. (2001). “Temperature dependence of the optical energy gap and Urbach's energy of CuIn5Se8,” J. Appl. Phys. 90, 44234428.Google Scholar
Rincón, C., Wasim, S. M., Marín, G., and Molina, I. (2003). “Temperature dependence of the optical energy band gap in CuIn3Se5 and CuGa3Se5,” J. Appl. Phys. 93, 780782.Google Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B 192, 5569.Google Scholar
Rodriguez-Carvajal, J. (2016) Fullprof: (version 5.8), Laboratoire Léon Brillouin (CEA-CNRS), France.Google Scholar
Roque-Infante, E., Delgado, J. M., and López-Rivera, S. A. (1997). “Synthesis and crystal structure of Cu2FeSnSe4, a I2IIIVVI4 semiconductor,” Mater. Lett. 33, 6770.Google Scholar
Schmid, D., Reukh, M., Greenwald, F., and Schock, H. W. (1993). “Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73, 29022909.Google Scholar
Shay, J. L. and Wernik, J. H. (1974). Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and applications (Pergamon Press, Oxford, UK).Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20, 7983.Google Scholar
Wasim, S. M., Rincón, C., Marín, G., Delgado, J. M., and Contreras, J. (2004). “Effect of ordered defects on the crystal structure of In-rich ternary compounds of the Cu–In–Se system,” J. Phys. D Appl. Phys. 37, 479484.Google Scholar
Zhang, S. B., Wei, S. H., and Zunger, A. (1997). “Stabilization of ternary compounds via ordered arrays of defect pairs,” Phys. Rev. Lett. 78, 40594062.Google Scholar
Zhang, S. B., Wei, S. H., Zunger, A., and Katayama-Yoshida, H. (1998). “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57, 96429656.Google Scholar
Supplementary material: File

Delgado et al. supplementary material

Delgado et al. supplementary material 1

Download Delgado et al. supplementary material(File)
File 35.5 KB