Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T13:45:56.291Z Has data issue: false hasContentIssue false

Crystal structure of sitagliptin dihydrogen phosphate monohydrate, C16H16F6N5O(H2PO4)(H2O)

Published online by Cambridge University Press:  11 November 2015

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Kai Zhong
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of sitagliptin dihydrogen phosphate monohydrate (sometimes referred to as sitagliptin phosphate monohydrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Sitagliptin dihydrogen phosphate monohydrate crystallizes in space group P212121 (#19) with a = 6.137 108(12), b = 9.304 018(14), c = 38.307 67(10) Å, V = 2187.359(8) Å3, and Z = 4. The sitagliptin cation folds so that the two planar portions are roughly parallel. The ammonium group of the sitagliptin cation, the phosphate anion, and the water molecule form a network of strong hydrogen bonds. The result is a two-dimensional network, parallel to the ab plane. Halfway between these hydrogen bond planes, there are planes of high fluorine density. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1500.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).Google Scholar
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B 58, 380388.Google Scholar
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). “EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. 42(6), 11971202.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Cypes, S. H., Chen, A. M., Ferlita, R. R., Hansen, K., Lee, I., Vydra, V. K., and Wenslow, R. M. (2005). “Phosphoric Acid Salt of a Dipeptidyl Peptidase-IV Inhibitor,” U.S. Patent 2005/0032804.Google Scholar
Cypes, S. H., Chen, A. M., Ferlita, R. R., Hansen, K., Lee, I., Vydra, V. K., and Wenslow, R. M. (2008). “Phosphoric Acid Salt of a Dipeptidyl Peptidase-IV Inhibitor,” U.S. Patent 7,326,708.Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.Google Scholar
Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D-Arco, Ph., Llunell, M., Causà, , and Noël, Y. (2014). CRYSTAL14 User's Manual. University of Torino; http://www.crystal.unito.it Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
ICDD (2014). PDF-4+ 2014 (Database), edited by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), (Los Alamos National Laboratory Report LAUR 86-784).Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton Radiat. 15(5), 427432.Google Scholar
Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy algorithm,” Z. Kristallogr. Suppl. 2007, 191196.CrossRefGoogle Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.CrossRefGoogle Scholar
McKinnon, J. J., Spackman, M. A., and Mitchell, A. S. (2004). “Novel tools for visualizing and exploring intermolecular interactions in molecular crystals,” Acta Crystallogr. B 60, 627668.CrossRefGoogle ScholarPubMed
Nada, R., Catlow, C. R. A., Pisani, C., and Orlando, R. (1993). “Ab initio Hartree-Fock perturbed-cluster study of neutral defects in LiF,” Model. Simul. Mater. Sci. Eng. 1, 165187.Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, , and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inf. 3, 33; Doi: 10.1186/1758-2946.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B 56(3), 455465.Google Scholar
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm 11, 1932.CrossRefGoogle Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20(2), 7983.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B 70(6), 10201032.CrossRefGoogle ScholarPubMed
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc. (2013). Spartan ‘14 version 1.1.0 (Wavefunction Inc.), 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, M. J., Turner, M. J., Jayatilaka, D., and Spackman, M. A. (2012). CrystalExplorer version 3.1 (University of Western Australia).Google Scholar
Zicovich-Wilson, C. M., Bert, A., Roetti, C., Dovesi, R., and Saunders, V. R. (2002). “Characterization of the electronic structure of crystalline compounds through their localized Wannier functions,” J. Chem. Phys. 116, 11201127.CrossRefGoogle Scholar
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 1

Download Kaduk supplementary material(File)
File 2.7 MB
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 2

Download Kaduk supplementary material(File)
File 7.3 KB