Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 0.218 Render date: 2021-11-28T03:51:56.470Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

X-ray diffractometry studies and lattice parameter calculation on KNO3–NH4NO3 solid solutions

Published online by Cambridge University Press:  01 March 2012

Wen-Ming Chien
Affiliation:
Metallurgical and Materials Engineering, University of Nevada–Reno, Reno, Nevada 89557
Dhanesh Chandra*
Affiliation:
Metallurgical and Materials Engineering, University of Nevada–Reno, Reno, Nevada 89557
Jennifer Franklin
Affiliation:
Metallurgical and Materials Engineering, University of Nevada–Reno, Reno, Nevada 89557
Claudia J. Rawn
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831-6064
Abdel K. Helmy
Affiliation:
Special Devices Inc., 14370 White Sage Road, Moorpark, California 93021
*
a)Electronic mail: dchandra@unr.edu

Abstract

The solid-state phase transitions of the KNO3–NH4NO3 solid solutions have been determined by high temperature X-ray diffractometry, and lattice parameter calculation has also been performed. Ammonium nitrate (AN) is of great use for gas generators of automobile air bag systems. The X-ray diffraction results showed the single (AN) phase III from 5% to 20% KNO3 in NH4NO3 and up to 373 K, which is the important temperature range for the air bag gas generator applications. The X-ray diffraction patterns of the low temperature KNO3 phase (KN II) are from 92% to 100% KNO3 composition range and up to 393 K temperature. The high temperature KNO3 phase (KN I) showed very broad composition range from 20% up to 100% KNO3 at various temperature ranges. The lattice parameters of the NH4NO3-rich (AN III) and KNO3-rich (KN II and KN I) solid solutions have been calculated at different temperature range. The volumes of AN III phase decrease from 0.3201(4) to 0.3166(1) nm3 at room temperature and from 0.3250(6) to 0.3215(3) nm3 at 373 K as the compositions increase from 5% to 20% KNO3. The lattice constants of the hexagonal KN I phase show that there is no significant change in a direction when the temperature increases. Details of X-ray results, lattice expansions, and equations during heating are presented.

Type
XRD Characterization
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahtee, M., Smolander, K. J., Lucas, B. W., and Hewat, A. W. (1983). Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 10.1107/S0108270183005806 C39, 651655.CrossRefGoogle Scholar
Brown, R. N. and McLaren, A. C. (1962). Proc. R. Soc. London PRLAAZ 266, 329343.CrossRefGoogle Scholar
Cady, H. H. (1983). Phase Stabilization of Ammonium Nitrate, CPIA Publication No. 377, Johns Hopkins University, Applied Physics Laboratory, pp. 914.Google Scholar
Chandra, D. and Helmy, A. K. (1999). “X-ray diffraction and differential calorimetry investigation of ammonium nitrate solid solutions,” Interium Report to TRW Vehicle Safety Systems.Google Scholar
Chien, W. (2003). Ph.D. dissertation, University of Nevada, Reno.Google Scholar
Choi, C. S. and Prask, H. J. (1983). Phase Stabilization of Ammonium Nitrate, CPIA Publication No. 377, Hopkins University, Applied Physics Laboratory, pp. 8796.Google Scholar
Choi, C. S. and Prask, H. J. (1982). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B38, 23242328.CrossRefGoogle Scholar
Choi, C. S., Prask, H. J., and Prince, E. (1980). J. Appl. Crystallogr. JACGAR 13, 403409.CrossRefGoogle Scholar
Deimling, A., Engel, W., and Eisenreich, N. (1992). J. Therm. Anal. JTHEA9 38, 843853.CrossRefGoogle Scholar
Edwards, D. A. (1931). Z. Kristallogr. ZEKRDZ 80, 154163.Google Scholar
Goodwin, T. H. and Whetstone, J. (1947). J. Chem. Soc. Abs. 14551461.CrossRefGoogle Scholar
Holden, J. R. and Dickinson, C. W. (1975). J. Phys. Chem. JPCHAX 10.1021/j100570a011 79, 249256.CrossRefGoogle Scholar
Lucas, B. W., Ahtee, M., and Hewat, A. W. (1979). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 10.1107/S0567740879005525 B35(5), 10381041.CrossRefGoogle Scholar
Lucas, B. W., Ahtee, M., and Hewat, A. W. (1980). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B36, 20052008.CrossRefGoogle Scholar
Nimmo, J. K. and Lucas, B. W. (1976). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B32, 19681971.CrossRefGoogle Scholar
Nimmo, J. K. and Lucas, B. W. (1973). J. Phys. C JPSOAW 10.1088/0022-3719/6/2/001 6, 201211.CrossRefGoogle Scholar
Shinnaka, Y. (1962). J. Phys. Soc. Jpn. JUPSAU 17, 820828.CrossRefGoogle Scholar
Stromme, K. O. (1969). Acta Chem. Scand. (1947-1973) ACSAA4 23, 16251636.CrossRefGoogle Scholar
Tahvonen, P. E. (1947). Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys. AFMPA6 20.Google Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray diffractometry studies and lattice parameter calculation on KNO3–NH4NO3 solid solutions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

X-ray diffractometry studies and lattice parameter calculation on KNO3–NH4NO3 solid solutions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

X-ray diffractometry studies and lattice parameter calculation on KNO3–NH4NO3 solid solutions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *