Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-18T08:29:00.491Z Has data issue: false hasContentIssue false

Solvothermal synthesis of nano-sized skutterudite Co1−xNixSb3 powders

Published online by Cambridge University Press:  07 October 2013

J.Q. Li*
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
Z.P. Zhang
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
R.M. Luo
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
W.Q. Ao
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
F.S. Liu
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
*
a)Author to whom correspondence should be addressed. Electronic mail: junqinli@szu.edu.cn

Abstract

Nanostructuring is one of the effective approaches to lower the thermal conductivity of thermoelectric materials for improving its figure of merit. The nano-sized uniform skutterudite Co1−xNixSb3 (x = 0, 0.05, 0.075, 0.125, 0.15, and 0.25) thermoelectric powders were synthesized in triethylene glycol solution by using CoCl2, NiCl2, and SbCl3 as precursors and NaBH4 as the reductant. Different synthesis conditions were studied to pursue pure and uniform skutterudite CoSb3 powders. The powders were characterized by X-ray diffraction, field emission scanning electron microscope, and energy-dispersive X-ray analysis. Experimental results show that a Ni-doped skutterudite Co1−xNixSb3 single phase was obtained at 290 °C for 12 h. The powders are spherical, small, and uniform. As x increases from 0 to 0.25, the unit-cell parameter a increases from 0.9044 to 0.9065 nm and the particle size increases from 10 to 30 nm.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alboni, P. N., Ji, X., He, J., Gothard, N., Hubbard, J., and Tritt, T. M. (2007). “Synthesis and thermoelectric properties of “nano-engineered” CoSb3 skutterudite materials,” J. Electr. Mater. 36, 711.CrossRefGoogle Scholar
Caillat, T., Kulleck, J., Borshchevsky, A., and Fleurial, J. P. (1996). “Preparation and thermoelectric properties of the skutterudite-related phase Ru0.5Pd0.5Sb3,” J. Appl. Phys. 79, 84198426.CrossRefGoogle Scholar
Disalvo, F. J. (1999). “Thermoelectric cooling and power generation,” Science 285, 703706.CrossRefGoogle ScholarPubMed
Hicks, L. D., Harman, T. C., and Dresselhaus, M. S. (1993). “Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials,” Appl. Phys. Lett. 63, 32303232.CrossRefGoogle Scholar
Liu, H., Wang, J., Hu, X., Li, L., Gu, F., Zhao, S., Gu, M., Boughton, R. I., and Jiang, M. (2002). “Preparation of filled skutterudite nanowire by a hydrothermal method,” J. Alloys Compd. 334, 313316.CrossRefGoogle Scholar
Mi, J. L., Zhao, X. B., Zhu, T. J., Tu, J. P., and Cao, G. S. (2006). “Solvothermal synthesis and electrical transport properties of skutterudite CoSb3,” J. Alloys Compd. 417, 269272.CrossRefGoogle Scholar
Mi, J. L., Zhu, T. J., Zhao, X. B. and Ma, J. (2007a). “Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3,” J. Appl. Phys. 101, 054314.CrossRefGoogle Scholar
Mi, J. L., Zhao, X. B., Zhu, T. J., Tu, J. P., and Cao, G. S. (2007b). “Solvothermal synthesis and electric transport properties of Te-doped CoSb3 skutterudites,” J. Inorg. Mater. 22, 269272.Google Scholar
Sales, B. C., Mandrus, D., and Williams, R. K. (1996). “Filled skutterudite antimonides: a new class of thermoelectric materials,” Science 272, 13251328.CrossRefGoogle ScholarPubMed
Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V., and Thompson, J. R. (1997). “Filled skutterudite antimonides: electron crystals and phonon glasses,” Phys. Rev. B 56, 1508115089.CrossRefGoogle Scholar
Toprak, M. S., Stiewe, C., Platzek, D., Williams, S., Bertini, L., Müller, E., Gatti, C., Zhang, Y., Rowe, M., and Muhammed, M. (2004). “The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3,” Adv. Funct. Mater. 14, 11891196.CrossRefGoogle Scholar
Tritt, T. M. (1999). “Thermoelectric materials: holey and unholey semiconductors,” Science 283, 804805.CrossRefGoogle Scholar
Viennois, R., Charar, S., Ravot, D., Haen, P., Manger, A., Bentien, A., Paschen, S., and Steglich, F. (2005). “Spin fluctuations in the skutterudite compound LaFe4Sb12,” Eur. Phys. J. B 46, 257267.CrossRefGoogle Scholar
Zhang, X., Lu, Q. M., Zhang, J. X., Wei, Q., Liu, D. M., and Liu, Y. Q. (2008). “In situ synthesis and thermoelectric properties of (Fe/Ni)xCo4−xSb12 compounds by SPS,” J. Alloys Compd. 457, 368371.CrossRefGoogle Scholar