Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.37 Render date: 2022-08-14T13:42:51.749Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Effect of Co substitution on the martensitic transformation and magnetocaloric properties of Ni50Mn35−xCoxSn15

Published online by Cambridge University Press:  23 April 2013

F.S. Liu
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
Q.B. Wang
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
S.P. Li
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
W.Q. Ao
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
J.Q. Li*
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
*
a)Author to whom correspondence should be addressed. Electronic mail: junqinli@szu.edu.cn

Abstract

Martensitic transformation and magnetic entropy change in Co substituted Ni50Mn35−xCoxSn15 (x = 0, 1.0, 1.5, 2.0, and 3.0) Heusler alloys have been investigated by X-ray powder diffraction analysis, differential scanning calorimetry, and magnetic measurements. X-ray diffraction analysis reveals that the Ni50Mn35−xCoxSn15 alloys have L21 Heusler structure at room temperature. The phase decomposition of the sample with x = 3.0, after annealing 48 h at 1173 K, is confirmed by both X-ray powder diffraction analysis and energy-dispersive x-ray spectroscopy in scanning electron microscopy. With the increase of the Co content from 0 to 2.0, the martensitic transformation temperature TM increases from 185 to 245 K, which is in good agreement with the rule of valence electron concentration e/a-dependence of TM. The magnetic entropy change ∆SM is investigated in the vicinity of the martensitic transformation.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhobe, P. A., Priolkar, K. R., and Nigam, A. K. (2008). “Anomalous magnetic properties in Ni50Mn35In15,” J. Phys. D. Appl. Phys. 41, 235006.CrossRefGoogle Scholar
Brown, P. J., Gandy, A. P., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K. U., Oikawa, K., Ouladdiaf, B., and Ziebeck, K. R. A. (2006). “The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56,” J. Phys., Condens. Matter, (UK) 18, 22492259.CrossRefGoogle Scholar
Clementi, E., Raimondi, D. L., and Reinhardt, W. P. (1967). “Atomic screening constants from Scf functions. II. Atoms with 37 to 86 electrons,” J. Chem. Phys. 47, 13001308.CrossRefGoogle Scholar
Gao, B., Hu, F. X., Shen, J., Wang, J., Sun, J. R., and Shen, B. G. (2009). “Field-induced structural transition and the related magnetic entropy change in Ni43Mn43Co3Sn11 alloy,” J. Magn. Magn. Mater. 321, 25712574.CrossRefGoogle Scholar
Han, Z. D., Wang, D. H., Zhang, C. L., Xuan, H. C., Zhang, J. R., Gu, B. X., and Du, Y. W. (2008). “The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni-Mn-Sb ferromagnetic shape memory alloys,” J. Appl. Phys. 104, 053906.CrossRefGoogle Scholar
Han, Z., Wang, D., Qian, B., Feng, J., Jiang, X., and Du, Y. (2010). “Phase transitions, magnetocaloric effect and magnetoresistance in Ni–Co–Mn–Sn ferromagnetic shape memory alloy,” Jpn. J. Appl. Phys. 49, 010211.CrossRefGoogle Scholar
Helmholdt, R. B. and Buschow, K. H. J. (1987). “Crystallographic and magnetic structure of Ni2MnSn and NiMn2Sn,” J. Less-Common Met. 128, 167171.CrossRefGoogle Scholar
Hu, F. X., Shen, B. G., Sun, J. R., Cheng, Z. H., Rao, G. H., and Zhang, X. X. (2001). “Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6,” Appl. Phys. Lett. 78, 36753677.CrossRefGoogle Scholar
Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., and Ishida, K. (2006). “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439, 957960.CrossRefGoogle ScholarPubMed
Kainuma, R., Ito, W., Umetsu, R. Y., Oikawa, K., and Ishida, K. (2008). “Magnetic field-induced reverse transformation in B2-type nicomnal shape memory alloys,” Appl. Phys. Lett. 93, 091906.CrossRefGoogle Scholar
Krenke, T., Duman, E., Acet, M., Wassermann, E. F., Moya, X., Manosa, L., and Planes, A. (2005a). “Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys,” Nat. Mater. 4, 450454.CrossRefGoogle Scholar
Krenke, T., Acet, M., Wassermann, E. F., Moya, X., Manosa, L., and Planes, A. (2005b). “Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys,” Phys. Rev. B 72, 014412.CrossRefGoogle Scholar
Krenke, T., Moya, X., Aksoy, S., Acet, M., Entel, P., Manosa, L., Planes, A., Elerman, Y., Yucel, A., and Wassermann, E. F. (2007). “Electronic aspects of the martensitic transition in Ni-Mn based Heusler alloys,” J. Magn. Magn. Mater. 310, 27882789.CrossRefGoogle Scholar
Kuhrt, Ch., Schittny, Th. and Bärner, K. (1985). “Magnetic B–T phase diagram of anion substituted MnAs. magnetocaloric experiments,” Phys. Status Solidi A (Germany). 91, 105113.CrossRefGoogle Scholar
Ma, L., Zhang, H. W., Yu, S. Y., Zhu, Z. Y., Chen, J. L., Wu, G. H., Liu, H. Y., Qu, J. P., and Li, Y. X. (2008). “Magnetic-field-induced martensitic transformation in MnNiGa:Co alloys,” Appl. Phys. Lett. 92, 032509.CrossRefGoogle Scholar
Ma, S. C., Cao, Q. Q., Xuan, H. C., Zhang, C. L., Shen, L. J., Wang, D. H., and Du, Y. W. (2011). “Magnetic and magnetocaloric properties in Melt-Spun and annealed Ni42.7Mn40.8Co5.2Sn11.3 ribbons,” J. Alloy. Compd. 509, 11111114.CrossRefGoogle Scholar
Ortin, J., and Delaey, L. (2002). “Hysteresis in shape-memory alloys,” Int. J. Nonlinear Mech. 37, 12751281.CrossRefGoogle Scholar
Pasquale, M., Sasso, C., Lewis, L., Giudici, L., Lograsso, T., and Schlagel, D. (2005). “Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals,” Phys. Rev. B 72, 094435.CrossRefGoogle Scholar
Pecharsky, V. K. and Gschneidner, K. A. (1997). “Giant magnetocaloric effect in Gd5(Si2Ge2),” Phys. Rev. Lett. 78, 44944497.CrossRefGoogle Scholar
Planes, A., Manosa, L., and Acet, M. (2009). “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Phys., Condens. Matter, (UK) 21, 233201.Google ScholarPubMed
Slater, J. C. (1964). “Atomic radii in crystals,” J. Chem. Phys. 41, 31993205.CrossRefGoogle Scholar
Tegus, O., Bruck, E., Buschow, K. H. J., and de Boer, F. R. (2002). “Transition-metal-based magnetic refrigerants for room-temperature applications,” Nature 415, 150152.CrossRefGoogle ScholarPubMed
Wada, H. and Tanabe, Y. (2001). “Giant magnetocaloric effect of MnAs1−xSbx,” Appl. Phys. Lett. 79, 33023304.CrossRefGoogle Scholar
Yu, S. Y., Cao, Z. X., Ma, L., Liu, G. D., Chen, J. L., Wu, G. H., Zhang, B., and Zhang, X. X. (2007). “Realization of magnetic field-induced reversible martensitic transformation in nicomnga alloys,” Appl. Phys. Lett. 91, 102507.CrossRefGoogle Scholar
Yuhasz, W. M., Schlagel, D. L., Xing, Q., Dennis, K. W., McCallum, R. W., and Lograsso, T. A. (2009). “Influence of annealing and phase decomposition on the magnetostructural transitions in Ni50Mn39Sn11,” J. Appl. Phys. 105, 07A921.CrossRefGoogle Scholar
Zhang, C. L., Wang, D. H., Cao, Q. Q., Han, Z. D., Xuan, H. C., and Du, Y. W. (2008). “Magnetostructural phase transition and magnetocaloric effect in off-stoichiometric Mn1.9−XNixGe Alloys,” Appl. Phys. Lett. 93, 122505.Google Scholar
Zhang, X. X., Tejada, J., Xin, Y., Sun, G. F., Wong, K. W., and Bohigas, X. (1996). “Magnetocaloric effect in La0.67Ca0.33MnOdelta and La0.60Y0.07Ca0.33MnOdelta bulk materials,” Appl. Phys. Lett. 69, 35963598.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Co substitution on the martensitic transformation and magnetocaloric properties of Ni50Mn35−xCoxSn15
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of Co substitution on the martensitic transformation and magnetocaloric properties of Ni50Mn35−xCoxSn15
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of Co substitution on the martensitic transformation and magnetocaloric properties of Ni50Mn35−xCoxSn15
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *