Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T08:44:47.698Z Has data issue: false hasContentIssue false

Executive dysfunction, brain aging, and political leadership

Published online by Cambridge University Press:  18 January 2016

Mark Fisher
Affiliation:
Departments of Neurology and Political Science University of California, Irvine Irvine, CA 92697 mfisher@uci.edu
David L. Franklin
Affiliation:
School of Medicine University of California, Riverside 900 University Avenue Riverside, CA 92521 dlfrankl@medsch.ucr.edu
Jerrold M. Post
Affiliation:
Elliott School of International Affairs The George Washington University 1957 E Street, N.W. Washington, DC 20052 jpost@gwu.edu
Get access

Abstract

Decision-making is an essential component of executive function, and a critical skill of political leadership. Neuroanatomic localization studies have established the prefrontal cortex as the critical brain site for executive function. In addition to the prefrontal cortex, white matter tracts as well as subcortical brain structures are crucial for optimal executive function. Executive function shows a significant decline beginning at age 60, and this is associated with age-related atrophy of prefrontal cortex, cerebral white matter disease, and cerebral microbleeds. Notably, age-related decline in executive function appears to be a relatively selective cognitive deterioration, generally sparing language and memory function. While an individual may appear to be functioning normally with regard to relatively obvious cognitive functions such as language and memory, that same individual may lack the capacity to integrate these cognitive functions to achieve normal decision-making. From a historical perspective, global decline in cognitive function of political leaders has been alternatively described as a catastrophic event, a slowly progressive deterioration, or a relatively episodic phenomenon. Selective loss of executive function in political leaders is less appreciated, but increased utilization of highly sensitive brain imaging techniques will likely bring greater appreciation to this phenomenon. Former Israeli Prime Minister Ariel Sharon was an example of a political leader with a well-described neurodegenerative condition (cerebral amyloid angiopathy) that creates a neuropathological substrate for executive dysfunction. Based on the known neuroanatomical and neuropathological changes that occur with aging, we should probably assume that a significant proportion of political leaders over the age of 65 have impairment of executive function.

Type
Perspectives
Copyright
Copyright © Association for Politics and the Life Sciences 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Post, Jerrold M., “n aging leaders: Possible effects of the aging process on the conduct of leadership,” Journal of Geriatric Psychiatry, 1973, 7: 109116.Google Scholar
2. Hunt, A. W., Turner, G. R., Polatajko, H., Bottari, C., and Dawson, D. R., “Executive function, self-regulation, and attribution in acquired brain injury: A scoping review,” Neuropsychological Rehabilitation, 2013, 23(6): 914932.CrossRefGoogle ScholarPubMed
3. Rosenbloom, Michael H., Schmahmann, Jeremy D., and Price, Bruce H., “The functional neuroanatomy of decisionmaking,” Journal of Neuropsychiatry and Clinical Neurosciences, 2012, 24: 266277.CrossRefGoogle ScholarPubMed
4. Post, Jerrold M., “Woodrow Wilson re-examined: The mind-body controversy redux and other disputations,” Political Psychology, 1983, 4: 289306.CrossRefGoogle Scholar
5. Park, Bert Edward, The Impact of Illness on World Leaders (Philadelphia: University of Pennsylvania Press, 1986), pp. 376, 331-342.CrossRefGoogle Scholar
6. Tumulty, Joseph, Woodrow Wilson as I Knew Him (New York: Doubleday, 1921), pp. 434435Google Scholar
7. Grayson, Cary T., Woodrow Wilson: An Intimate Memoir (New York: Holt, Rinehart & Winston, 1960), pp. 5056, 96-100.Google Scholar
8. Toole, James F., “Dementia in world leaders and its effects upon international events: The examples of Franklin D. Roosevelt and T. Woodrow Wilson,” European Journal of Neurology, 1999, 6: 115119.CrossRefGoogle Scholar
9. Post, Jerrold M., Leaders and Their Followers in a Dangerous World: The Psychology of Political Behavior (Ithaca, NY: Cornell University Press, 2004), pp. 5051.Google Scholar
10. Toole, , pp. 115119.Google Scholar
11. Park, , pp. 221294.Google Scholar
12. Moran, Charles, Churchill Taken from the Diaries of Lord Moran: The Struggle for Survival, 1940-1965 (Boston: Houghton Mifflin, 1966), pp. 234243.Google Scholar
13. Post, , pp. 5354.Google Scholar
14. Post, , pp. 5657.Google Scholar
15. Abrams, Herbert L., The President Has Been Shot: Confusion, Disability, and the 25th Amendment in the Aftermath of the Attempted Assassination of Ronald Reagan (New York: W.W. Norton, 1992), pp. 197214.Google Scholar
16. Post, , pp. 5758.CrossRefGoogle Scholar
17. Gilbert, Robert E., “The politics of presidential illness: Ronald Reagan and the Iran-Contra scandal,” Politics and the Life Sciences, 2014, 33(2): 5876.CrossRefGoogle Scholar
18. Alvarez, Julie A. and Emory, Eugene, “Executive function and the frontal lobes: A meta-analytic review,” Neuropsychology Review, 2006, 16(1): 1742.CrossRefGoogle ScholarPubMed
19. Alvarez, and Emory, .Google Scholar
20. Alvarez, and Emory, .Google Scholar
21. Lamar, Melissa and Raz, Amir, “Neuropsychological assessment of attention and executive functioning,” in Cambridge Handbook of Psychology, Health, and Medicine. 2nd ed., eds., Ayers, Susan, Baum, Andrew, McManus, Chris, Newman, Stanton, Wallston, Kenneth, Weinman, John, and West, Robert (New York: Cambridge University Press, 2007), pp. 290294.Google Scholar
22. Alvarez, and Emory, .Google Scholar
23. Treitza, Friederike H., Heydera, Katrin, and Dauma, Irene, “Differential course of executive control changes during normal aging,” Neuropsychology, Development, and Cognition: Section B, Aging, Neuropsychology, and Cognition, 2007, 14(4): 370393.CrossRefGoogle Scholar
24. Drag, Lauren L. and Bieliauskas, Linas A., “Contemporary review 2009: Cognitive aging,” Journal of Geriatric Psychiatry and Neurology, 2010, 23: 7593.CrossRefGoogle ScholarPubMed
25. Raz, N., Faith, M., Gunning, F. M., Head, D., Dupuis, J. D., McQuain, J., Briggs, S. D., Loken, W. J., Thornton, A. E., and Acker, J. D., “Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter,” Cerebral Cortex, 1997, 7(3): 268282.CrossRefGoogle Scholar
26. Raz, et al.Google Scholar
27. MacPherson, Sarah E., Phillips, Louise H., and Sala, Sergio Della, “Age, executive function, and social decision making: A dorsolateral prefrontal theory of cognitive aging,” Psychology and Aging, 2002, 17(4): 598609.CrossRefGoogle ScholarPubMed
28. Longstreth, W. T., Manolio, T. A., Arnold, A., Burke, G. L., Bryan, N., Jungreis, C. A., Enright, P. L., O'Leary, D., and Fried, L., “Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study,” Stroke, 1996, 27: 12741282.CrossRefGoogle ScholarPubMed
29. Delano-Wood, Lisa, Abeles, Norm, Sacco, Joshua M., Wierenga, Christina E., Horne, Nikki R., and Bozoki, Andrea, “Regional white matter pathology in mild cognitive impairment: Differential influence of lesion type on neuropsychological functioning,” Stroke, 2008, 39: 794799.CrossRefGoogle ScholarPubMed
30. Gunning-Dixon, Faith M., Brickman, Adam M., Cheng, Janice C., and Alexopoulos, George S., “Aging of cerebral white matter: A review of MRI findings,” International Journal of Geriatric Psychiatry, 2009, 24(2): 109117.CrossRefGoogle ScholarPubMed
31. Hedden, Trey, Mormino, Elizabeth C., Amariglio, Rebecca E., Younger, Alayna P., Schultz, Aaron P., Alex Becker, J., Buckner, Randy L., Johnson, Keith A., Sperling, Reisa A., and Rentz, Dorene M., “Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults,” Journal of Neuroscience, 2012, 32(46): 1623316242.CrossRefGoogle ScholarPubMed
32. Jokinen, H., Kalska, H., Ylikoski, R., Madureira, S., Verdelho, A., van der Flier, W. M., Scheltens, P., Barkhof, F., Visser, M. C., Fazekas, F., Schmidt, R., O'Brien, J., Waldemar, G., Wallin, A., Chabriat, H., Pantoni, L., Inzitari, D., and Erkinjuntti, T., “Longitudinal cognitive decline in subcortical ischemic vascular disease: The LADIS Study,” Cerebrovascular Disease, 2009, 27(4): 384391.CrossRefGoogle ScholarPubMed
33. Kramer, J. H., Reed, B. R., Mungas, D., Weiner, M. W., and Chui, H. C., “Executive dysfunction in subcortical ischaemic vascular disease,” Journal of Neurology, Neurosurgery, & Psychiatry, 2002, 72: 217220.CrossRefGoogle ScholarPubMed
34. O'Sullivan, M., Summers, P. E., Jones, D. K., Jarosz, J. M., Williams, S. C., and Markus, H. S., “Normal-appearing white matter in ischemic leukoaraiosis: A diffusion tensor MRI study,” Neurology, 2001, 57: 23072310.CrossRefGoogle ScholarPubMed
35. O'Sullivan, M., Morris, R. G., Huckstep, B., Jones, D. K., Williams, S. C., and Markus, H. S., “Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis,” Journal of Neurology, Neurosurgery & Psychiatry, 2004, 75: 441447.CrossRefGoogle ScholarPubMed
36. O'Sullivan, M., Morris, R. G., and Markus, H. S., “Brief cognitive assessment for patients with cerebral small vessel disease,” Journal of Neurology, Neurosurgery & Psychiatry, 2005, 76: 11401145.CrossRefGoogle ScholarPubMed
37. Oosterman, J. M., Sergeant, J. A., Weinstein, H. C., and Scherder, E. J., “Timed executive functions and white matter in aging with and without cardiovascular risk factors,” Reviews in the Neurosciences, 2004, 15(6): 439462.CrossRefGoogle ScholarPubMed
38. Pantoni, L., Poggesi, A., Basile, A. M., Pracucci, G., Barkhof, F., Chabriat, H., Erkinjuntti, T., Ferro, J. M., Hennerici, M., O'Brien, J., Schmidt, R., Visser, M. C., Wahlund, L. O., Waldemar, G., Wallin, A., and Inzitari, D., “Leukoaraiosis predicts hidden global functioning impairment in nondisabled older people: The LADIS (Leukoaraiosis and Disability in the Elderly) Study,” Journal of the American Geriatrics Society, 2006, 54(7): 10951101.CrossRefGoogle ScholarPubMed
39. Gunning-Dixon, et al.Google Scholar
40. Macfarlane, M. D., Looi, J. C., Walterfang, M., Spulber, G., Velakoulis, D., Crisby, M., Orndahl, E., Erkinjuntti, T., Garde, E., Waldemar, G., Wallin, A., and Wahlund, L. O., “Executive dysfunction correlates with caudate nucleus atrophy in patients with white matter changes on MRI: A subset of LADIS,” Psychiatry Research: Neuroimaging, 2013, 214(1): 1623.CrossRefGoogle ScholarPubMed
41. Vernooij, M. W., van der Lugt, A., Ikram, M. A., Wielopolski, P. A., Niessen, W. J., Hofman, A., Krestin, G. P., and Breteler, M. M., “Prevalence and risk factors of cerebral microbleeds: The Rotterdam Scan Study,” Neurology, 2008, 70(14): 12081214.CrossRefGoogle ScholarPubMed
42. Fisher, Mark, “Cerebral microbleeds and white matter disease: Separated at birth?European Journal of Neurology, 2012, 19(1): 23.CrossRefGoogle ScholarPubMed
43. Gregoire, S. M., Scheffler, G., Jäger, H. R., Yousry, T. A., Brown, M. M., Kallis, C., Cipolotti, L., and Werring, D. J., “Strictly lobar microbleeds are associated with executive impairment in patients with ischemic stroke or transient ischemic attack,” Stroke, 2013, 44: 12671272CrossRefGoogle ScholarPubMed
44. Patel, B., Lawrence, A. J., Chung, A. W., Rich, P., Mackinnon, A. D., Morris, R. G., Barrick, T. R., and Markus, H. S., “Cerebral microbleeds and cognition in patients with symptomatic small vessel disease,” Stroke, 2013, 44: 356361.CrossRefGoogle ScholarPubMed
45. Landau, David, Arik: The Life of Ariel Sharon (New York: Alfred A. Knopf, 2014), p. 535.Google Scholar
46. Landau, , p. 535.Google Scholar
47. Gurol, M. E., Viswanathan, A., Gidicsin, C., Hedden, T., Martinez-Ramirez, S., Dumas, A., Vashkevich, A., Ayres, A. M., Auriel, E., van Etten, E., Becker, A., Carmasin, J., Schwab, K., Rosand, J., Johnson, K. A., and Greenberg, S. M., “Cerebral amyloid angiopathy burden associated with leukoaraiosis: A positron emission tomography/magnetic resonance imaging study,” Annals of Neurology, 2013, 73(4): 529536.CrossRefGoogle ScholarPubMed
48. Landau, , pp. 441471.Google Scholar