Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T11:21:13.584Z Has data issue: false hasContentIssue false

Iceberg disturbance to benthic communities in McMurdo Sound, Antarctica

Published online by Cambridge University Press:  25 March 2021

Stacy Kim*
Affiliation:
Moss Landing Marine Labs
Clint A. Collins
Affiliation:
University of Hawai’i at Hilo, Environmental Health and Safety Office (EHSO)
*
Author for correspondence: Stacy Kim, Email: skim@mlml.calstate.edu

Abstract

On the continental shelf of the Antarctic the major disturbance to benthic ecosystems is from iceberg scouring; however, this is based on observations from the Peninsula region. We combine observation and experimentation in the McMurdo Sound region of the Ross Sea to determine if community recovery patterns there are similar to those in better-studied Antarctic regions, and if local immigration is an important factor in recovery dynamics. We found that regardless of habitat differences in depth, substrate, and oceanographic setting, iceberg disturbance strongly impacted benthic communities in McMurdo Sound. Notably, in shallow water (<30 m) where anchor ice is an annual disturbance, both the benthic communities and recovery processes were more variable than at deeper locations. A manipulative experiment performed in a shallow area indicated that recruitment might be more important than immigration to infaunal community recovery. We conclude that whilst disturbance frequency influences dominant epifauna, recovery from iceberg disturbance is a slow ecological progression that is dependent on the extremely inconsistent recruitment processes of the high Antarctic benthic ecosystem.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. J., Gorley, R. N., & Clarke, R. K. (2005). Permanova. Permutational Multivariate Analysis of Variance, a Computer Program. Auckland: Department of Statistics, University of Auckland.Google Scholar
Arntz, W., Brey, T., & Gallardo, V. A. (1994). Antarctic zoobenthos. Oceanography and Marine Biology, 32, 241304.Google Scholar
Arrigo, K. R., & van Dijken, G. L. (2003). Impact of iceberg C-19 on Ross Sea primary production. Geophysical Research Letters, 30(16), 18361848.CrossRefGoogle Scholar
Arrigo, K. R., & van Dijken, G. L. (2004). Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 51(1), 117138.CrossRefGoogle Scholar
Barnes, D. K. A., & Conlan, K. E. (2007). Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1138.CrossRefGoogle ScholarPubMed
Barnes, D. K. A., & Souster, T. (2011). Reduced survival of Antarctic benthos linked to climate induced iceberg scouring. Nature Climate Change, 1, 365368.CrossRefGoogle Scholar
Barnes, P. W., & Lien, R. (1988). Icebergs rework shelf sediments to 500 m off Antarctica. Geology, 16(12), 11301133.2.3.CO;2>CrossRefGoogle Scholar
Barry, J. P., & Dayton, P. K. (1988). Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biology, 8(5), 367376.CrossRefGoogle Scholar
Blake, J. A., & Arnofsky, P. L. (1999). Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia, 402, 57106.CrossRefGoogle Scholar
Bockus, D. (1996). Seasonal anchor ice disturbance and the structure of benthic infaunal communities in McMurdo Sound, Antarctica. MSc Thesis, Moss Landing Marine Laboratories, California.Google Scholar
Brunt, K. M., Sergienko, O., & MacAyeal, D. R. (2006). Observations of unusual fast-ice conditions in the southwest Ross Sea, Antarctica: preliminary analysis of iceberg and storminess effects. Annals of Glaciology, 44(1), 183187.CrossRefGoogle Scholar
Cazenave, F., Zook, R., Carroll, D., Flagg, M., & Kim, S. (2011). Development of the ROV SCINI and deployment in McMurdo Sound, Antarctica. Journal of Ocean Technology, 6(3), 3958.Google Scholar
Clarke, A. (1988). Seasonality in the Antarctic marine environment. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 90(3), 461473.CrossRefGoogle Scholar
Clarke, K. R., & Gorley, R. N. (2001). PRIMER v6. Plymouth: PRIMER-E Ltd.Google Scholar
Comiso, J. C., Kwok, R., Martin, S., & Gordon, A. L. (2011). Variability and trends in sea ice extent and ice production in the Ross Sea. Journal of Geophysical Research, 116, CO4021.CrossRefGoogle Scholar
Conlan, K. E., Kim, S. L., Thurber, A. R., & Hendrycks, E. (2010). Benthic changes at McMurdo Station, Antarctica following local sewage treatment and regional iceberg-mediated productivity decline. Marine Pollution Bulletin, 60(3), 419432.CrossRefGoogle ScholarPubMed
Dayton, P. K. (1989). Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science (Washington), 243(4925), 14841486.CrossRefGoogle Scholar
Dayton, P. K., & Hessler, R. R. (1972). Role of biological disturbance in maintaining diversity in the deep sea. Deep Sea Research and Oceanographic Abstracts, 19, 199208.CrossRefGoogle Scholar
Dayton, P., Jarrell, S., Kim, S., Thrush, S., Hammerstrom, K., Slattery, M., & Parnell, E. (2016). Surprising episodic recruitment and growth of Antarctic sponges: implications for ecological resilience. Journal of Experimental Marine Biology and Ecology, 482, 3855.CrossRefGoogle Scholar
Dayton, P. K., Kim, S., Jarrell, S. C., Oliver, J. S., Hammerstrom, K., Fisher, J. L., … Thurber, A.R. (2013). Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini . PloS One, 8(2), e56939.CrossRefGoogle ScholarPubMed
Dayton, P. K., & Oliver, J. S. (1977). Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science, 197(4298), 5558.CrossRefGoogle ScholarPubMed
Dayton, P. K., Robilliard, G. A., & Devries, A.L. (1969). Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science, 163(3864), 273274.CrossRefGoogle ScholarPubMed
Dayton, P. K., Robilliard, G. A., & Paine, R. T. (1970). Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. Antarctic Ecology, 1, 244258.Google Scholar
Dial, R., & Roughgarden, J. (1998). Theory of marine communities: the intermediate disturbance hypothesis. Ecology, 79(4), 14121424.CrossRefGoogle Scholar
Fillinger, L., Janussen, D., Lundälv, T., Richter, C. (2013). Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Current Biology, 23(14), 13301334. doi: 10.1016/j.cub.2013.05.051 CrossRefGoogle ScholarPubMed
Gallardo, V. A. (1987). The sublittoral macrofaunal benthos of the Antarctic shelf. Environment International, 13(1), 7181.CrossRefGoogle Scholar
Gerdes, D., Hilbig, B., & Montiel, A. (2003). Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar Biology, 26(5), 295301.CrossRefGoogle Scholar
Gerdes, D., Isla, E., Knust, R., Mintenbeck, K., & Rossi, S. (2008). Response of Antarctic benthic communities to disturbance: first results from the artificial Benthic Disturbance Experiment on the eastern Weddell Sea Shelf, Antarctica. Polar Biology, 31, 14691480. doi: 10.1007/s00300-008-0488-y CrossRefGoogle Scholar
Gutt, J. (2001). On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24, 553563.CrossRefGoogle Scholar
Gutt, J., Cape, M., Dimmler, W., Fillinger, L., Isla, E., Lieb, V., … Pulcher, C. (2013). Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biology, 36, 895906.CrossRefGoogle Scholar
Gutt, J., & Piepenburg, D. (2003). Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Marine Ecology Progress Series, 253, 7783.CrossRefGoogle Scholar
Gutt, J., & Starmans, A. (2001). Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biology, 24, 615619.CrossRefGoogle Scholar
Gutt, J., Starmans, A., & Dieckmann, G. (1996). Impact of iceberg scouring on polar benthic habitats. Marine Ecology Progress Series, 137(1), 311316.CrossRefGoogle Scholar
Lenihan, H. S., & Oliver, J. S. (1995). Anthropogenic and natural disturbances to Marine Benthic communities in Antarctica. Ecological Applications, 5, 311326.Google Scholar
Oliver, J. S., & Slattery, P. N. (1985). Effects of crustacean predators on species composition and population structure of soft-bodied infauna from McMurdo Sound, Antarctica. Ophelia, 24(3), 155175.CrossRefGoogle Scholar
Pearse, J. S., Bosch, I., McClintock, J. B., Marinovic, B., & Britton, R. (1986). Contrasting tempos of reproduction by shallow-water animals in McMurdo Sound, Antarctica. Antarctic Journal, 31, 182184.Google Scholar
Peck, L. S., Brockington, S., Vanhove, S., & Beghyn, M. (1999). Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Marine Ecology Progress Series, 186, 18.CrossRefGoogle Scholar
Pickett, S. T. A., & White, P. S. (2013). The Ecology of Natural Disturbance and Patch Dynamics. Orlando: Elsevier.Google Scholar
Poulin, E., Palma, A. T., & Féral, J.-P. (2002). Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology & Evolution, 17(5), 218222.CrossRefGoogle Scholar
Richardson, M. D., & Hedgpeth, J. W. (1977). Antarctic soft-bottom, macrobenthic community adaptations to a cold, stable, highly productive, glacially affected environment. In: G. A. Llano (Ed.) Adaptations within Antarctic ecosystems (pp. 181196). Washington, DC: Smithsonian Institution.Google Scholar
Seibel, B. A., & Dierssen, H. M. (2003). Cascading trophic impacts of reduced biomass in the Ross Sea, Antarctica: Just the tip of the iceberg? The Biological Bulletin, 205(2), 9397.CrossRefGoogle ScholarPubMed
Smale, D. A., Barnes, D. K. A., Fraser, K. P. P., & Peck, L. S. (2008). Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island, Antarctica. Marine Ecology Progress Series, 355, 8594.CrossRefGoogle Scholar
Sousa, W. P. (1979). Disturbance in marine intertidal boulder fields: the nonequilibrium maintenance of species diversity. Ecology, 60(6), 12251239.CrossRefGoogle Scholar
Sousa, W. P. (2001). Natural disturbance and the dynamics of marine benthic communities. Marine Community Ecology, 4, 85130.Google Scholar
Thrush, S. F., & Cummings, V. J. (2011). Massive icebergs, alteration in primary food resources and change in benthic communities at Cape Evans, Antarctica. Marine Ecology, 32(3), 289299.CrossRefGoogle Scholar
Vargas, S., Dohrmann, M., Göcke, C. Janussen, D., & Wörheide, G. (2017). Nuclear and mitochondrial phylogeny of Rossella (Hexactinellida: Lyssacinosida, Rossellidae): a species and a species flock in the Southern Ocean. Polar Biology, 40, 24352444. doi: 10.1007/s00300-017-2155-7AU.CrossRefGoogle Scholar
Vause, B. J., Morley, S. A., Fonseca, V. G., Jażdżewska, A., Ashton, G. V., Barnes, D. K. A., … Peck, L.S. (2019). Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change. BMC Ecology, 19(27). doi: 10.1186/s12898-019-0244-x.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Kim and Collins supplementary material

Figure S5

Download Kim and Collins supplementary material(Image)
Image 7.1 MB
Supplementary material: Image

Kim and Collins supplementary material

Figure S4

Download Kim and Collins supplementary material(Image)
Image 6.8 MB
Supplementary material: Image

Kim and Collins supplementary material

Figure S2

Download Kim and Collins supplementary material(Image)
Image 9.7 MB
Supplementary material: Image

Kim and Collins supplementary material

Figure S1

Download Kim and Collins supplementary material(Image)
Image 7.4 MB
Supplementary material: Image

Kim and Collins supplementary material

Figure S3

Download Kim and Collins supplementary material(Image)
Image 7.1 MB