Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T07:21:19.224Z Has data issue: false hasContentIssue false

Trypanosoma cruzi isolates from Chile are heterogeneous and composed of mixed populations when characterized by schizodeme and Southern analyses

Published online by Cambridge University Press:  01 March 2004

J. P. TORRES
Affiliation:
Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70086, Santiago 7, Chile
S. ORTIZ
Affiliation:
Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70086, Santiago 7, Chile
S. MUÑOZ
Affiliation:
Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70086, Santiago 7, Chile
A. SOLARI
Affiliation:
Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70086, Santiago 7, Chile

Abstract

In total, 61 Chilean isolates of Trypanosoma cruzi, were analysed using schizodeme and Southern analysis, using as probes the highly variable regions of minicircles from cloned parasites. Isolates were collected and amplified from domestic and wild triatomines, and from infected subjects in all the endemic areas of Chile. Three major parasite genotypes could be detected in the domestic transmission cycle, whilst 1 major T. cruzi genotype is circulating in the wild transmission cycle. Schizodeme analysis suggested that T. cruzi isolates are mixed populations, whereas the Southern analyses detected only 3 mixed isolates using 4 selected minicircle segments as probes.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALLEN, S. (1984). Isolation and isoenzyme characterization of Trypanosoma cruzi from Chile and Peru. M.Sc. thesis, University of London.
ANONYMOUS(1999). Recommendations from a satellite meeting. Memorias do Instituto Oswaldo Cruz 94 (Suppl. 1), 429432.Google Scholar
APT, W., AGUILERA, X., ARRIBADA, A., GOMEZ, L., MILES, M. A. & WIDMER, G. (1984). Epidemiology of Chagas disease in Northern Chile: isoenzyme profiles of Trypanosoma cruzi from domestic and sylvatic transmission cycles and their association with cardiopathy. American Journal of Tropical Medicine and Hygiene 37, 302307.Google Scholar
BARNABE, C., BRISSE, S. & TIBAYRENC, M.(2000). Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas disease: a multilocus enzyme electrophoretic approach. Parasitology 120, 513526.CrossRefGoogle Scholar
BARNABE, C., NEUBAUER, K., SOLARI, A. & TIBAYRENC, M. (2001). Trypanosoma cruzi: presence of the two major phylogenetic lineages and of several lesser discrete typing units (DTUs) in Chile and Paraguay. Acta Tropica 78, 127137.CrossRefGoogle Scholar
BRENIERE, S. F., BOSSENO, M. F., TALLERÍA, J., BASTRENTA, B., YACSICK, N., NOIREAU, F., ALCAZAR, J. L., BARNABE, C., WINCKER, P. & TIBAYRENC, M. (1998). Different behaviour of two Trypansoma cruzi major clones: transmission and circulation in young Bolivian patients. Experimental Parasitology 89, 285295.CrossRefGoogle Scholar
BRISSE, S., BARNABE, C. & TIBAYRENC, M. (2000). Identification of six Trypanosoma cruzi lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. International Journal for Parasitology 30, 3544.CrossRefGoogle Scholar
CARREÑO, H., ROJAS, C., AGUILERA, X., APT, W., MILES, M. A. & SOLARI, A. (1987). Schizodeme analyses of Trypanosoma cruzi zymodemes from Chile. Experimental Parasitology 64, 252260.CrossRefGoogle Scholar
DEANE, M. P., SOUZA, M. A., PEREIRA, N. M., GONCALVES, A. M., MOMEM, H. & MOREL, C. M. (1984). Trypanosoma cruzi: inoculation schedules and re-isolation methods select individual strains from doubly infected mice, as demonstrated by schizodeme and zymodeme analyses. Journal of Protozoology 31, 276280.CrossRefGoogle Scholar
DEGRAVE, W., FRAGOSO, S. P., BRITTO, C., VAN HEUVERSWYN, H., KIDANE, G., CARDOSO, M. A., MUELLER, R., SIMPSON, L. & MOREL, C. (1988). Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi. Molecular and Biochemical Parasitology 27, 6370.CrossRefGoogle Scholar
DIAMOND, L. S. (1968). Improved methods for the monoaxenic cultivation of Entamoeba histolytica Schaudin (1903) and E. histolytica-like amoebae with trypanosomatids. Journal of Parasitology 54, 715719.Google Scholar
ENGLUND, P., HAJDUK, S. L. & MARINI, J. C. (1982). The molecular biology of trypanosomes. Annual Review of Biochemistry 51, 695726.CrossRefGoogle Scholar
FRASCH, A. C., SANCHEZ, D. & STOPPANI, A. (1984). Homogeneous and heterogeneous minicircle subpopulations in Trypanosoma cruzi kinetoplast DNA. Biochimica e Biophysica Acta 782, 2633.CrossRefGoogle Scholar
GONCALVES, A., CHIARI, E., DEANE, M. P., CARNEIRO, M., ROMANHA, A. J. & MOREL, C. (1984). Schizodeme characterization of natural and artificial populations of Trypanosoma cruzi as tools in the study of Chagas disease. In Application of Biochemical and Molecular Biology Techniques to Problems of Parasite and Vector Identification, (ed. Morel, C.) pp. 253274. World Health Organization, Geneva.
GONCALVES, A., NEHME, N. & MOREL, C. M. (1990). An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels. Memorias do Instituto Oswaldo Cruz 85, 101106.CrossRefGoogle Scholar
MACINA, R. A., SANCHEZ, D. O., AFFRANCHINO, J. L., ENGEL, J. C. & FRASCH, A. C. C. (1985). Polymorphisms within minicircle sequence classes in the kinetoplast DNA of Trypanosoma cruzi clones. Molecular and Biochemical Parasitology 16, 6174.CrossRefGoogle Scholar
MACINA, R. A., SANCHEZ, D. O., GLUSCHANKOF, D. A. M., BURRONE, O. R. & FRASCH, A. C. C. (1986). Sequence diversity in the kinetoplast DNA of Trypanosoma cruzi. Molecular and Biochemical Parasitology 21, 2532.CrossRefGoogle Scholar
MACINA, R. A., ARAUZO, S., REYES, M. B., SANCHEZ, D. O., BASOMBRIO, M. A., MONTAMAT, E. E., SOLARI, A. & FRASCH, A. C. C. (1987). Trypanosoma cruzi isolates from Argentina and Chile grouped with the aid of DNA probes. Molecular and Biochemical and Parasitology 25, 4553.CrossRefGoogle Scholar
MILES, M. A., LANHAM, S. M., DE SOUZA, A. A. & POVOA, M. (1980). Further enzymic characters of Trypanosoma cruzi and their evaluation for strain identification. Transaction of the Royal Society of Tropical Medicine and Hygiene 74, 221237.CrossRefGoogle Scholar
MONTAMAT, E. E., DE LUCA D'ORO, G., GALLERANO, R., SOSA, R. & BLANCO, A. (1996). Characterization of Trypanosoma cruzi populations by zymodemes: correlation with clinical picture. American Journal of Tropical Medicine and Hygiene 55, 625628.CrossRefGoogle Scholar
MONTAMAT, E. E., DURAND, S., BOCCO, J., DE LUCA D'ORO, G. & BLANCO, A. (1999). Identification of Trypanosoma cruzi zymodemes by kinetoplast DNA probes. Journal of Eukaryotic Microbiology 46, 155159.CrossRefGoogle Scholar
MOREL, C., CHIARI, E., PLESSMAN CARMAGO, E., MATLEI, D. M., ROMANHA, A. J. & SIMPSON, L. (1980). Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA. Proceedings of the National Academy of Sciences, USA 77, 68106814.CrossRefGoogle Scholar
REVOLLO, S., OURY, B., LAURENT, J.-P., BARNABE, C., QUESNEY, V., CARRIERE, V., NOEL, S. & TIBAYRENC, M. (1998). Trypanosoma cruzi: impact of clonal evolution of the parasite on its biological and molecular properties. Experimental Parasitology 89 3039.CrossRefGoogle Scholar
SANCHEZ, G., WALLACE, A., MUÑOZ, S., VENEGAS, J., ORTIZ, S. & SOLARI, A. (1993). Characterization of Trypanosoma cruzi populations by several molecular markers support a clonal mode of reproduction. Biological Research 26, 167176.Google Scholar
SOLARI, A., VENEGAS, J., GONZALEZ, E. & VASQUEZ, C. (1991). Detection and classifications of Trypanosoma cruzi by DNA hybridizations with non radioactive probes. Journal of Protozoology 38, 559565.CrossRefGoogle Scholar
SOLARI, A., WALLACE, A., ORTIZ, S., VENEGAS, J. & SANCHEZ, G. (1998). Biological characterization of Trypanosoma cruzi stocks from Chilean insect vectors. Experimental Parasitology 89, 312322.CrossRefGoogle Scholar
SOLARI, A., CAMPILLAY, R., ORTIZ, S. & WALLACE, A.(2001). Identification of Trypanosoma cruzi genotypes circulating in Chilean chagasic patients. Experimental Parasitology 97, 226233.CrossRefGoogle Scholar
STUART, K. (1983). Kinetoplast DNA, mitochondrial DNA with a difference. Molecular and Biochemical Parasitology 9, 93104.CrossRefGoogle Scholar
TIBAYRENC, M. & AYALA, F. (1987). Forte correlation entre classification isoenzymatique at variability de l'ADN kinetoplastique chez Trypanosoma cruzi. Comptes Rendus dè Acadèmie des Science, Paris 304, 8992.Google Scholar
VEAS, F., BRENIERE, S. F., CUNY, G., BRENGUES, C., SOLARI, A. & TIBAYRENC, M. (1991). General procedure to construct highly specific kDNA probes for clones of Trypanosoma cruzi for sensitive detection by polymerase chain reaction. Cellular and Molecular Biology 37, 7384.Google Scholar
VENEGAS, J., ORTIZ, S., MUÑOZ, S. & SOLARI, A. (1997). Molecular karyotype and schizodeme analyses of Trypanosoma cruzi stocks from Chilean triatomines. Parasitology 115, 4146.CrossRefGoogle Scholar
WALLACE, A., ORTIZ, S., SANCHEZ, G., VILLAGRA, R., MUGA, M. & SOLARI, A. (2001). Studies on parasitemia courses and mortality in mice infected with genetically distant Trypanosoma cruzi clonets. Biological Research 34, 8390.CrossRefGoogle Scholar