Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T07:36:21.724Z Has data issue: false hasContentIssue false

Role of calcium influx through voltage-operated calcium channels and of calcium mobilization in the physiology of Schistosoma mansoni muscle contractions

Published online by Cambridge University Press:  28 March 2006

D. L. MENDONÇA-SILVA
Affiliation:
Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
E. NOVOZHILOVA
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
P. J. R. COBBETT
Affiliation:
Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48854, USA
C. L. M. SILVA
Affiliation:
Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
F. NOËL
Affiliation:
Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
M. I. J. TOTTEN
Affiliation:
Parasitology Research Group, The Queen's University of Belfast, Belfast, Northern Ireland, UK
A. G. MAULE
Affiliation:
Parasitology Research Group, The Queen's University of Belfast, Belfast, Northern Ireland, UK
T. A. DAY
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA

Abstract

We tested the hypothesis that voltage-operated Ca2+ channels mediate an extracellular Ca2+ influx in muscle fibres from the human parasite Schistosoma mansoni and, along with Ca2+ mobilization from the sarcoplasmic reticulum, contribute to muscle contraction. Indeed, whole-cell voltage clamp revealed voltage-gated inward currents carried by divalent ions with a peak current elicited by steps to +20 mV (from a holding potential of −70 mV). Depolarization of the fibres by elevated extracellular K+ elicited contractions that were completely dependent on extracellular Ca2+ and inhibited by nicardipine (half inhibition at 4·1 μM). However these contractions were not very sensitive to other classical blockers of voltage-gated Ca2+ channels, indicating that the schistosome muscle channels have an atypical pharmacology when compared to their mammalian counterparts. Futhermore, the contraction induced by 5 mM caffeine was inhibited after depletion of the sarcoplasmic reticulum either with thapsigargin (10 μM) or ryanodine (10 μM). These data suggest that voltage-operated Ca2+ channels do contribute to S. mansoni contraction as does the mobilization of stored Ca2+, despite the small volume of sarcoplasmic reticulum in schistosome smooth muscles.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blair, K. and Anderson, P. ( 1994). Physiological and pharmacological properties of muscle cells isolated from the flatworm Bdelloura candida. Parasitology 109, 325335.CrossRefGoogle Scholar
Blair, K. L., Day, T. A., Lewis, M. C., Bennett, J. L. and Pax, R. A. ( 1991). Studies on muscle cells isolated from Schistosoma mansoni: a Ca2+-dependent K+ channel. Parasitology 102, 251258.CrossRefGoogle Scholar
Buryi, V., Morel, N., Salomone, S., Kerger, S. and Godfraind, T. ( 1995). Evidence for a direct interaction of thapsigargin with voltage-dependent Ca2+ channel. Naunyn Schmiedebergs Archives of Pharmacology 351, 4045.CrossRefGoogle Scholar
Chitsulo, L., Loverde, P. and Engels, D. ( 2004). Schistosomiasis. Nature Review of Microbiology 2, 1213.CrossRefGoogle Scholar
Cobbett, P. and Day, T. A. ( 2003). Functional voltage-gated Ca2+ channels in muscle fibers of the platyhelminth Dugesia tigrina. Comparative Biochemistry and Physiology A 134, 593605.CrossRefGoogle Scholar
Cunha, V. M. and Noël, F. ( 1998). Ca2+-Mg2+ ATPase in Schistosoma mansoni: evidence for heterogeneity and resistance to praziquantel. Memorias do Instituto Oswaldo Cruz 93 (Suppl. 1), 181182.CrossRefGoogle Scholar
Cunha, V. M., Reis, J. M. and Noël, F. ( 1996). Evidence for the presence of two Ca2+-Mg2+ ATPases with different sensitivities to thapsigargin and cyclopiazonic acid in the human flatworm Schistosoma mansoni. Comparative Biochemistry and Physiology B 114, 199205.CrossRefGoogle Scholar
Day, T. A., Bennett, J. L. and Pax, R. A. ( 1994). Serotonin and its requirement for maintenance of contractility in muscle fibres isolated from Schistosoma mansoni. Parasitology 108, 425432.CrossRefGoogle Scholar
Day, T. A., Chen, G. Z., Miller, C., Tian, M., Bennett, J. L. and Pax, R. A. ( 1996). Cholinergic inhibition of muscle fibres isolated from Schistosoma mansoni (Trematoda[ratio ]Digenea). Parasitology 113, 5561.CrossRefGoogle Scholar
Day, T. A., Haithcock, J., Kimber, M. and Maule, A. G. ( 2000). Functional ryanodine receptor channels in flatworm muscle fibres. Parasitology 120, 417422.CrossRefGoogle Scholar
Day, T. A., Kim, E., Bennett, J. L. and Pax, R. A. ( 1995). Analysis of the kinetics and voltage-dependency of transient and delayed K+ currents in muscle fibers isolated from the flatworm Schistosoma mansoni. Comparative Biochemistry and Physiology A 111, 7987.CrossRefGoogle Scholar
Day, T. A., Orr, N., Bennett, J. L. and Pax, R. A. ( 1993). Voltage-gated currents in muscle cells of Schistosoma mansoni. Parasitology 106, 471477.CrossRefGoogle Scholar
de Mendonça, R. L., Beck, E., Rumjanek, F. D. and Goffeau, A. ( 1995). Cloning and characterization of a putative calcium-transporting ATPase gene from Schistosoma mansoni. Molecular and Biochemical Parasitology 72, 129139.CrossRefGoogle Scholar
Fetterer, R. H., Pax, R. A. and Bennett, J. L. ( 1980). Praziquantel, potassium and 2,4-dinitrophenol: analysis of their action on the musculature of Schistosoma mansoni. European Journal of Pharmacology 64, 3138.CrossRefGoogle Scholar
Godfraind, T., Miller, R. and Wibo, M. ( 1986). Calcium antagonism and calcium entry blockade. Pharmacological Review 38, 321416.Google Scholar
Graham, M. K., McGeown, J. G. and Fairweather, I. ( 1999). Ionic mechanisms underlying spontaneous muscle contractions in the liver fluke, Fasciola hepatica. American Journal of Physiology 277, R374383.CrossRefGoogle Scholar
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. ( 1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archives 391, 85100.CrossRefGoogle Scholar
Hockerman, G. H., Peterson, B. Z., Johnson, B. D. and Catterall, W. A. ( 1997). Molecular determinants of drug binding and action on L-type calcium channels. Annual Review of Pharmacology and Toxicology 37, 361396.CrossRefGoogle Scholar
Itonaga, Y., Nakajima, T., Morita, H., Hanano, T., Miyauchi, Y., Ito, Y. and Inoue, R. ( 2002). Contribution of nifedipine-insensitive voltage-dependent Ca2+ channel to diameter regulation in rabbit mesenteric artery. Life Sciences 72, 487500.CrossRefGoogle Scholar
Kohn, A. B., Anderson, P. A., Roberts-Misterly, J. M. and Greenberg, R. M. ( 2001 a). Schistosome calcium channel beta subunits. Unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. Journal of Biological Chemistry 276, 3687336876.Google Scholar
Kohn, A. B., Lea, J., Roberts-Misterly, J. M., Anderson, P. A. and Greenberg, R. M. ( 2001 b). Structure of three high voltage-activated calcium channel alpha1 subunits from Schistosoma mansoni. Parasitology 123, 489497.Google Scholar
Kumar, D., McGeown, J. G., Reynoso-Ducoing, O., Ambrosio, J. R. and Fairweather, I. ( 2003). Observations on the musculature and isolated muscle fibres of the liver fluke, Fasciola hepatica. Parasitology 127, 457473.CrossRefGoogle Scholar
Mitterdorfer, J., Grabner, M., Kraus, R. L., Hering, S., Prinz, H., Glossmann, H. and Striessnig, J. ( 1998). Molecular basis of drug interaction with L-type Ca2+ channels. Journal of Bioenergetics and Biomembranes 30, 319334.CrossRefGoogle Scholar
Moneypenny, C. G., Kreshchenko, N., Moffett, C. L., Halton, D. W., Day, T. A. and Maule, A. G. ( 2001). Physiological effects of FMRFamide-related peptides and classical transmitters on dispersed muscle fibres of the turbellarian, Procerodes littoralis. Parasitology 122, 447455.CrossRefGoogle Scholar
Noël, F., Cunha, V. M., Silva, C. L. and Mendonça-Silva, D. L. ( 2001). Control of calcium homeostasis in Schistosoma mansoni. Memorias do Instituto Oswaldo Cruz 96 (Suppl.), 8588.CrossRefGoogle Scholar
Olivera, B. M., Miljanich, G. P., Ramachandran, J. and Adams, M. E. ( 1994). Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annual Review of Biochemistry 63, 823867.CrossRefGoogle Scholar
Remme, J. H., Blas, E., Chitsulo, L., Desjeux, P. M., Engers, H. D., Kanyok, T. P., Kengeya Kayondo, J. F., Kioy, D. W., Kumaraswami, V., Lazdins, J. K., Nunn, P. P., Oduola, A., Ridley, R. G., Toure, Y. T., Zicker, F. and Morel, C. M. ( 2002). Strategic emphases for tropical diseases research: a TDR perspective. Trends in Parasitology 18, 421426.CrossRefGoogle Scholar
Semeyn, D. R. ( 1987). Physiologic responses to cholinergic compounds in adult Schistosoma mansoni. Ph.D. thesis, Michigan State University, East Lansing, MI.
Silk, M. H. and Spence, I. M. ( 1969). Ultrastructural studies of the blood fluke – Schistosoma mansoni. II. The musculature. South African Journal of Medical Sciences 34, 1120.Google Scholar
Silva, C. L., Cunha, V. M., Mendonça-Silva, D. L. and Noël, F. ( 1998). Evidence for ryanodine receptors in Schistosoma mansoni. Biochemical Pharmacology 56, 9971003.CrossRefGoogle Scholar
Striessnig, J., Grabner, M., Mitterdorfer, J., Hering, S., Sinnegger, M. J. and Glossmann, H. ( 1998). Structural basis of drug binding to L Ca2+ channels. Trends in Pharmacological Sciences 19, 108115.CrossRefGoogle Scholar
Talla, E., de Mendonca, R. L., Degand, I., Goffeau, A. and Ghislain, M. ( 1998). Schistosoma mansoni Ca2+-ATPase SMA2 restores viability to yeast Ca2+-ATPase-deficient strains and functions in calcineurin-mediated Ca2+ tolerance. Journal of Biological Chemistry 273, 2783127840.CrossRefGoogle Scholar
Tunctan, B., Altug, S., Uludag, O. and Abacioglu, N. ( 2000). Effects of econazole on receptor-operated and depolarization-induced contractions in rat isolated aorta. Life Sciences 67, 23932401.CrossRefGoogle Scholar
van der Lee, R., Kam, K. L., Pfaffendorf, M. and van Zwieten, P. A. ( 1998). Differential time course of the vasodilator action of various calcium antagonists. Fundaments in Clinical Pharmacology 12, 607612.Google Scholar
Yamaguchi, S., Okamura, Y., Nagao, T. and Adachi-Akahane, S. ( 2000). Serine residue in the IIIS5-S6 linker of the L-type Ca2+ channel alpha 1C subunit is the critical determinant of the action of dihydropyridine Ca2+ channel agonists. Journal of Biological Chemistry 275, 4150441511.CrossRefGoogle Scholar