Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:02:55.829Z Has data issue: false hasContentIssue false

Murine models susceptibility to distinct Trypanosoma cruzi I genotypes infection

Published online by Cambridge University Press:  10 November 2016

CIELO M. LEÓN
Affiliation:
Grupo de Investigaciones Microbiológicas –UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia Instituto Nacional de Salud, Bogotá, Colombia
MARLENY MONTILLA
Affiliation:
Instituto Nacional de Salud, Bogotá, Colombia
RICARDO VANEGAS
Affiliation:
Instituto Nacional de Salud, Bogotá, Colombia
MARIA CASTILLO
Affiliation:
Instituto Nacional de Salud, Bogotá, Colombia
EDGAR PARRA
Affiliation:
Instituto Nacional de Salud, Bogotá, Colombia
JUAN DAVID RAMÍREZ*
Affiliation:
Grupo de Investigaciones Microbiológicas –UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
*
*Corresponding author: Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia. E-mail: juand.ramirez@urosario.edu.co

Summary

Chagas disease is a complex zoonosis that affects around 8 million people worldwide. This pathology is caused by Trypanosoma cruzi, a kinetoplastid parasite that shows tremendous genetic diversity evinced in six distinct Discrete Typing Units (TcI-TcVI) including a recent genotype named as TcBat and associated with anthropogenic bats. TcI presents a broad geographical distribution and has been associated with chronic cardiomyopathy. Recent phylogenetic studies suggest the existence of two genotypes (Domestic (TcIDom) and sylvatic TcI) within TcI. The understanding of the course of the infection in different mouse models by these two genotypes is not yet known. Therefore, we infected 126 animals (ICR-CD1, National Institute of Health (NIH) and Balb/c) with two TcIDom strains and one sylvatic strain for a follow-up period of 60 days. We quantified the parasitaemia, immune response and histopathology observing that the maximum day of parasitaemia was achieved at day 21 post-infection. Domestic strains showed higher parasitaemia than the sylvatic strain in the three mouse models; however in the survival curves Balb/c mice were less susceptible to infection compared with NIH and ICR-CD1. Our results suggest that the genetic background plays a fundamental role in the natural history of the infection and the sympatric TcI genotypes have relevant implications in disease pathogenesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, L., Machado, C., Chiari, E., Pena, S. and Macedo, A. (1999). Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Molecular and Biochemical Parasitology 100, 163172.Google Scholar
Andrade, L., Machado, C., Chiari, E., Pena, S. and Macedo, A. (2000). Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations. Experimental Parasitology 100, 269275.Google Scholar
Añez, N., Crisante, G., da Silva, F., Rojas, A., Carrasco, H., Umezawa, E., Stolf, A., Ramirez, J. and Teixeira, M. (2004). Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas disease. Tropical Medicine and International Health 9, 13191326.Google Scholar
Bice, D. and Zeledon, R. (1970). Comparison of infectivity of Trypanosoma cruzi . Journal of Parasitology 56, 663670.Google Scholar
Burgos, J., Diez, M., Vigliano, C., Bisio, M., Risso, M., Duffy, T., Cura, C., Brusses, B., Favaloro, L., Leguizamon, M., Lucero, R., Laguens, R., Levin, M., Favaloro, R. and Schijiman, A. (2010). Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clinical Infectious Diseases 51, 485495.CrossRefGoogle ScholarPubMed
Costa, S. C. (1999). Mouse as a model Chagas disease. Does mouse represent a good model for Chagas disease? Memórias do Instituto Oswaldo Cruz 94, 269272.Google Scholar
Cruz, L., Vivas, A., Hernández, C., Montilla, M., Florez, C., Parra, E. and Ramírez, J. (2015). Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. Infection, Genetics and Evolution 29, 110117.Google Scholar
Dos Reis, D., Monteiro, W., Piovezana, G., Teston, A., Gomes, M., de Araujo, S., Barbosa, M. and de Ornelas Toledo, M. (2012). Biological behaviour in mice of Trypanosoma cruzi isolates from Amazonas and Paraná, Brazil. Experimental Parasitology 130, 321329.Google Scholar
Hemmige, V., Tanowitz, H. and Sethi, A. (2012). Trypanosoma cruzi: a review with emphasis on cutaneous manifestations. International Journal of Dermatology 51, 501508.Google Scholar
Holf, D., Lynch, R. and Kirchhoff, L. (1993). Kinetic analysis of antigen-specific immune responses in resistant and susceptible mice during infection with Trypanosoma cruzi . Journal of Immunology 151, 70387047.Google Scholar
Jelicks, L. and Tanowitz, H. (2011). Advances in imaging of animal models of Chagas disease. Advances in Parasitology 75, 193208.Google Scholar
León, C., Hernández, C., Montilla, M. and Ramírez, J. (2015). Retrospective distribution of Trypanosoma cruzi I genotypes in Colombia. Memórias do Instituto Oswaldo Cruz 110, 387393.Google Scholar
Lima, L., Espinosa-Álvarez, O., Ortiz, P., Trejo-Varón, J., Carranza, J., Pinto, C., Serrano, M., Buck, G., Camargo, E. and Teixeira, M. (2015). Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trópica 151, 166177.Google Scholar
Mantilla, J., Zafra, G., Macedo, A. and Gonzalez, C. (2010). Mixed infection of Trypanosoma cruzi I and II in a Colombian cardiomyopathic patient. Human Pathology 41, 610613.Google Scholar
Marcili, A., Lima, L., Cavazzana, M., Junqueira, A., Veludo, H., Maia Da Silva, F., Campaner, M., Paiva, F., Nunes, V. and Teixeira, M. (2009). A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rADN, cytochrome b and Histone H2B genes and genotyping based on ITS1 rADN. Parasitology 136, 641655.Google Scholar
Marcondes, M., Borelli, P., Yoshida, N. and Russo, M. (2000). Acute Trypanosoma cruzi infection is associated with anemia, thrombocytopenia, leukopenia, and bone marrow hypoplasia: reversal by nifurtimox treatment. Microbes and Infection 2, 347352.Google Scholar
Ragone, P., Pérez, B. C., Padilla, A., Monje, M., Lauthier, J., Alberti, A., Tomasini, N., Cimino, R., Romero, N., Portelli, M., Nasser, J., Basombrío, M. and Diosque, P. (2012). Biological behavior of different Trypanosoma cruzi isolates circulating in an endemic area for Chagas disease in the Gran Chaco region of Argentina. Acta Trópica 123, 196201.Google Scholar
Ramirez, J. and Guhl, F. (2012). Molecular epidemiology of parasitic diseases: the Chagas disease model. Epidemiology-Current Perspectives on Research and Practice 6, 95118.Google Scholar
Ramirez, J., Guhl, F., Redon, L., Rosas, F., Marin, J. and Morillo, C. (2010). Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic Chagasic patients. PLoS Neglected Tropical Diseases 4, e899.Google Scholar
Ramírez, J. D., Tapia-Calle, G., Munoz-Cruz, G., Poveda, C., Rendón, L. M., Hincapié, E. and Guhl, F. (2014). Trypanosome species in neotropical bats: biological, evolutionary and epidemiological implications. Infection, Genetics and Evolution 22, 250256.Google Scholar
Rassi, A. Jr., Rassi, A. and Marcondes de Rezende, J. (2012). American tripanosomiasis (Chagas disease). Infectious Disease Clinics of North America 26, 275291.Google Scholar
Segovia, M., Carrasco, H., Martínez, C., Messenger, L., Nessi, A., Londoño, J., Espinosa, R., Martínez, C., Mijares, A. and Llewellyn, M. (2013). Molecular epidemiologic source tracking of orally transmitted Chagas disease, Venezuela. Emerging Infectious Diseases 19, 10981101.CrossRefGoogle ScholarPubMed
Téllez, J., Mejía-Jaramillo, A. and Triana, O. (2008). Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Trópica 108, 2634.Google Scholar
Texeira, A., Nitz, N., Guimaro, M. C., Gomes, C. and Santos-Buch, C. (2006). Chagas disease. PostgraduatE Medical Journal 82, 788798.Google Scholar
Tibayrenc, M., Barnabé, C. and Telleria, J. (2010). Reticulate evolution in Trypanosoma cruzi: medical and epidemiological implications. In American Trypanosomiasis: Chagas Disease. One Hundred Years of Research (ed. Telleria, J. and Tibayrenc, M.), pp. 475488. Elsevier, Burlington.Google Scholar
Wrightsman, R., Krassner, S. and Watson, J. (1992). Genetic control of response to Trypanosoma cruzi in mice: multiple genes influencing parasitemia and survival. Infection and Immunity 36, 637644.Google Scholar
Zafra, G., Mantilla, J., Jácome, J., Macedo, A. and González, C. (2011). Direct analysis of genetic variability in Trypanosoma cruzi populations from tissues of Colombian chagasic patients. Human Pathology 42, 11591168.Google Scholar
Zingales, B., Andrade, S., Briones, M., Campbell, D., Chiari, E., Fernandes, O., Guhl, F., Lages-Silva, E., Macedo, A., Machado, C., Miles, M., Romanha, A., Sturm, N., Tibayrenc, M. and Schijiman, A. (2009). A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Memórias do Instituto Oswaldo Cruz. 104, 10511054.Google Scholar
Zumaya-Estrada, F., Messenger, L., Lopez, T., Lewis, M., Flores, C., Martinez, A., Pennington, P., Cordon, C., Carrasco, H., Segovia, M., Miles, M. and Llewellyn, M. (2012). North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasites and Vectors 5, 226.Google Scholar
Zuñiga, E., Motran, C., Montes, C., Yagita, H. and Gruppi, A. (2002). Trypanosoma cruzi infection selectively renders parasite-specific IgG B lymphocytes susceptible to Fas/fas ligand-mediated fratricide. Journal of Immunology 168, 39653973.Google Scholar
Supplementary material: File

León supplementary material

Table S1

Download León supplementary material(File)
File 16.7 KB