Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T04:57:50.768Z Has data issue: false hasContentIssue false

Molecular and morphological characterization of the cercariae of Lecithodendrium linstowi (Dollfus, 1931), a trematode of bats, and incrimination of the first intermediate snail host, Radix balthica

Published online by Cambridge University Press:  08 November 2017

EGIE E. ENABULELE
Affiliation:
Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, P.M.B. 1154, Benin City, Nigeria
SCOTT P. LAWTON
Affiliation:
Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
ANTHONY J. WALKER
Affiliation:
Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
RUTH S. KIRK*
Affiliation:
Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
*
*Corresponding author: Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK. E-mail: r.kirk@kingston.ac.uk

Summary

Lecithodendrium linstowi is one of the most prevalent and abundant trematodes of bats, but the larval stages and intermediate hosts have not been identified. We present the first molecular and morphological characterization of the cercariae of L. linstowi based on a phylogenetic analysis of partial fragments of LSU and ITS2 rDNA. The first intermediate host was incriminated as Radix balthica by DNA barcoding using cox1 and ITS2 sequences, although the snail morphologically resembled Radix peregra, emphasizing the requirement for molecular identification of lymnaeids as important intermediate hosts of medical and veterinary impact. The application of molecular data in this study has enabled linkage of life cycle stages and accurate incrimination of the first intermediate host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeyda-Artigas, R. J., Bargues, M. D. and Mas-Coma, S. (2000). ITS-2 rDNA sequencing of Gnathostoma species (Nematoda) and elucidation of the species causing human gnathostomiasis in the Americas. Journal of Parasitology 86, 537544.Google Scholar
Bargues, M. D., Vigo, M., Horak, P., Dvorak, J., Patzner, R. A., Pointer, J. P., Jackiewicz, M., Meier-Brook, C. and Mas-Coma, S. (2001). European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infection Genetics and Evolution 1, 85107.Google Scholar
Brant, S. V., Morgan, J. A., Mkoji, G. M., Snyder, S. D., Rajapakse, R. P. and Loker, E. S. (2006). An approach to revealing blood fluke life cycles, taxonomy, and diversity: provision of key reference data including DNA sequence from single life cycle stages. Journal of Parasitology 92, 7788.CrossRefGoogle ScholarPubMed
Brown, F. J. (1933). On the excretory system and life history of Lecithodendrium chilostomum (Mehl.) and other bat trematodes, with a note on the life history of Dicrocoelium dendriticum (Rudolphi). Parasitology 25, 317328.Google Scholar
Esteban, J. G., Amengual, B. and Cobo, J. S. (2001). Composition and structure of helminth communities in two populations of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) from Spain. Folia Parasitologica 48, 143148.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
Greiman, S. E., Vaughan, J. A., Elmahy, R., Adisakwattana, P., Van Ha, N., Fayton, T. J., Khalil, A. I. and Tkach, V. V. (2017). Real-time PCR detection and phylogenetic relationships of Neorickettsia spp. in digeneans from Egypt, Philippines, Thailand, Vietnam and the United States. Parasitology International 66, 10031007.Google Scholar
Hall, T. A. (1999). Bioedit: a user friendly biological sequence alignment program editor and analysis program for Windows 95/98/NT. Nucleic Acid Symposium Series 41, 9598.Google Scholar
Kudlai, O., Stunžėnas, V. and Tkach, V. (2015). The taxonomic identity and phylogenetic relationships of Cercaria pugnax and C. helvetica XII (Digenea: Lecithodendriidae) based on morphological and molecular data. Folia Parasitologica 62, 003.Google Scholar
Lawton, S. P., Lim, R. M., Dukes, J. P., Kett, S. M., Cook, R. T., Walker, A. J. and Kirk, R. S. (2015). Unravelling the riddle of Radix: DNA barcoding for species identification of freshwater snail intermediate hosts of zoonotic digeneans and estimating their inter-population evolutionary relationships. Infection, Genetics and Evolution 35, 6374.Google Scholar
Lord, J. S. and Brooks, D. R. (2014). Bat endoparasites: a UK perspective. In Bats (Chiroptera) as Vectors of Diseases and Parasites. Parasitology Research Monographs 5 (ed. Klimpel, S. and Mehlhorn, H.), pp. 6386. Springer-Verlag, Berlin, Heidelberg.Google Scholar
Lord, J. S., Parker, S., Parker, F. and Brooks, D. R. (2012). Gastrointestinal helminths of pipistrelle bats (Pipistrellus pipistrellus/Pipistrellus pygmaeus) (Chiroptera: Vespertilionidae) of England. Parasitology 139, 366374.Google Scholar
Lotz, J. M. and Font, W. F. (2008). Family Lecithodendriidae Lühe, 1901. In Keys to the Trematoda, Vol. 3 (ed. Bray, R. A., Jones, A. and Gibson, D. I.), pp. 527536. CABI, Wallingford and Natural History Museum, London, UK.Google Scholar
Matskási, I. (1971). The Hungarian harvest mouse (Micromys minutus pratensis), a new host of the bat fluke Lecithodendrium linstowi (Trematodes). Parasitologia Hungarica 4, 137144.Google Scholar
Nasir, P. and Erasmus, D. A. (1964). A key to the cercariae from British freshwater molluscs. Journal of Helminthology 38, 245268.CrossRefGoogle Scholar
Nicoll, W. (1923). A reference list of the trematode parasites of British mammals. Parasitology 15, 236252.Google Scholar
Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A. and Littlewood, D. T. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal of Parasitology 33, 733755.CrossRefGoogle ScholarPubMed
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tkach, V. V., Pawlowski, J. and Mariaux, J. (2000). Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. International Journal for Parasitology 30, 8993.Google Scholar
Vaughan, J. A., Tkach, V. V. and Greiman, S. E. (2012). Neorickettsial endosymbionts of the Digenea: diversity, transmission and distribution. Advances in Parasitology 79, 253297.Google Scholar
Vilas, R., Criscione, C. D. and Blouin, M. S. (2005). A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131, 839846.Google Scholar
Wang, C. R., Li, L., Ni, H. B., Zhai, Y. Q., Chen, A. H., Chen, J. and Zhu, X. Q. (2009). Orientobilharzia turkestanicum is a member of Schistosoma genus based on phylogenetic analysis using ribosomal DNA sequences. Experimental Parasitology 121, 193197.Google Scholar