Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T04:43:13.273Z Has data issue: false hasContentIssue false

A model to account for the consequences of host nutrition on the outcome of gastrointestinal parasitism in sheep: logic and concepts

Published online by Cambridge University Press:  16 March 2007

D. VAGENAS*
Affiliation:
Animal Nutrition and Health Department, SAC, West Mains Road, Edinburgh EH9 3JG, UK
S. C. BISHOP
Affiliation:
Roslin Institute, Roslin, Midlothian EH25 9PS, UK
I. KYRIAZAKIS
Affiliation:
Animal Nutrition and Health Department, SAC, West Mains Road, Edinburgh EH9 3JG, UK Faculty of Veterinary Medicine, University of Thessaly, Trikalon 224, 43100, Karditsa, Greece
*
*Corresponding author: Animal Nutrition and Health Department, SAC, Bush Estate, Penicuik, Edinburgh EH26 0PH, UK. Tel: +44 131 5353319. Fax: +44 131 5353121. E-mail: Dimitrios.Vagenas@sac.ac.uk

Summary

A deterministic, dynamic simulation model is developed to account for the interactions between gastrointestinal parasitism and host nutrition, and predict their consequences on performance and level of parasitism of sheep. Larval intake and established adult worms are assumed to result in nutrient loss for the host. In order to reduce this loss the host will mount an immune response, which will affect the establishment rate of incoming larvae, mortality rate of adult worms, and fecundity of female worms, as well as nutrient loss caused by larval intake per se. Host anorexia is modelled as a function of worm mass. Parasitism is also assumed to affect the allocation of ingested nutrients to the host's bodily functions, with maintenance getting absolute priority, and protein allocated to immunity and production proportionally to their requirements. Inputs to the model include the expected growth attributes of the animal, feed quality, various parasitological parameters and daily larval intake. Outputs include feed intake, growth rate and body composition, as well as worm burden and faecal egg counts. The model allows exploration of the consequences of gastrointestinal parasitism on sheep of different growth characteristics, kept under environments that vary in the provision of nutrients and exposure to parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, E. M., Parkins, J. J. and Holmes, P. H. (1985). Influence of dietary-protein on the patho-physiology of ovine haemonchosis in Finn Dorset and Scottish Blackface lambs given a single moderate infection. Research in Veterinary Science 38, 5460.CrossRefGoogle Scholar
Agricultural and Food Research Council (1993). Energy and Protein Requirements of Ruminants. An advisory Manual Prepared by AFRC Technical committee on Responses to Nutrients. CAB International, Wallingford, UK.Google Scholar
Amarante, A. F.  T., Bricarello, P. A., Rocha, R. A. and Gennari, S. M. (2004). Resistance of Santa Ines, Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Veterinary Parasitology 120, 91106.CrossRefGoogle Scholar
Behnke, J. M., Barnard, C. J. and Wakelin, D. (1992). Understanding chronic nematode infections – evolutionary considerations, current hypotheses and the way forward. International Journal for Parasitology 22, 861907.CrossRefGoogle ScholarPubMed
Bishop, S. C. and Stear, M. J. (1997). Modelling responses to selection for resistance to gastro-intestinal parasites in sheep. Animal Science 64, 469478.CrossRefGoogle Scholar
Bishop, S. C. and Stear, M. J. (1999). Genetic and epidemiological relationships between productivity and disease resistance: gastro-intestinal parasite infection in growing lambs. Animal Science 69, 515524.CrossRefGoogle Scholar
Bishop, S. C. and Stear, M. J. (2000). The use of a gamma-type function to assess the relationship between the number of adult Teladorsagia circumcincta and total egg output. Parasitology 121, 435440.CrossRefGoogle ScholarPubMed
Black, J. L., Bray, H. J. and Giles, L. R. (1999). The thermal and infectious environment. In A Quantitative Biology of the Pig (ed. Kyriazakis, I.), pp. 7197. CAB International, Wallingford, Oxon, UK.Google Scholar
Bown, M. D., Poppi, D. P. and Sykes, A. R. (1991). Nitrogen transactions along the digestive-tract of lambs concurrently infected with Trichostrongylus-colubriformis and Ostertagia-circumcincta. British Journal of Nutrition 66, 237249.CrossRefGoogle ScholarPubMed
Bricarello, P. A., Arnarante, A. F.  T., Rocha, R. A., Cabral, S. L., Huntley, J. F., Houdijk, J. G.  M., Abdalla, A. L. and Gennari, S. M. (2005). Influence of dietary protein supply on resistance to experimental infections with Haemonchus contortus in Ile de France and Santa Ines lambs. Veterinary Parasitology 134, 99109.CrossRefGoogle Scholar
Butler-Hogg, B. W. (1984). Growth patterns in sheep: wool growth during weight loss and subsequent compensatory growth. The Journal of Agricultural Science 102, 105109.CrossRefGoogle Scholar
Casadevall, A. and Pirofski, L. A. (1999). Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infection and Immunity 67, 37033713.CrossRefGoogle ScholarPubMed
Chapple, R. P. (1993). Effect of stocking arrangement on pig performance. In Manipulating Pig Production IV (ed. Batterham, E. S.), pp. 8797. Australian Pig Science Association, Victoria.Google Scholar
Coffey, M. P., Emmans, G. C. and Brotherstone, S. (2001). Genetic evaluation of dairy bulls for energy balance traits using random regression. Animal Science 73, 2940.CrossRefGoogle Scholar
Coop, R. L., Graham, R. B., Jackson, F., Wright, S. E. and Angus, K. W. (1985). Effect of experimental Ostertagia circumcincta infection on the performance of grazing lambs. Research in Veterinary Science 38, 282287.CrossRefGoogle ScholarPubMed
Coop, R. L. and Holmes, P. H. (1996). Nutrition and parasite interaction. International Journal for Parasitology 26, 951962.CrossRefGoogle ScholarPubMed
Coop, R. L., Huntley, J. F. and Smith, W. D. (1995). Effect of dietary-protein supplementation on the development of immunity to Ostertagia-circumcincta in growing lambs. Research in Veterinary Science 59, 2429.CrossRefGoogle ScholarPubMed
Coop, R. L. and Kyriazakis, I. (1999). Nutrition-parasite interaction. Veterinary Parasitology 84, 187204.CrossRefGoogle ScholarPubMed
Coop, R. L. and Kyriazakis, I. (2001). Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends in Parasitology 17, 325330.CrossRefGoogle ScholarPubMed
Cronje, P. B. and Smuts, M. (1994). Nutrient partitioning in merino rams with different wool growth-rates. Animal Production 59, 5560.Google Scholar
Emmans, G. C. (1994). Effective energy – a concept of energy-utilization applied across species. British Journal of Nutrition 71, 801821.CrossRefGoogle ScholarPubMed
Greer, A. W., Stankiewicz, M., Jay, N. P., McAnulty, R. W. and Sykes, A. R. (2005). The effect of concurrent corticosteroid induced immuno-suppression and infection with the intestinal parasite Trichostrongylus colubriformis on food intake and utilization in both immunologically naive and competent sheep. Animal Science 80, 8999.CrossRefGoogle Scholar
Gruner, L., Aumont, G., Getachew, T., Brunel, J. C., Pery, C., Cognie, Y. and Guerin, Y. (2003). Experimental infection of Black Belly and INRA 401 straight and crossbred sheep with trichostrongyle nematode parasites. Veterinary Parasitology 116, 239249.CrossRefGoogle ScholarPubMed
Houdijk, J. G.  M., Kyriazakis, I., Jackson, F., Huntley, J. F. and Coop, R. L. (2000). Can an increased intake of metabolizable protein affect the periparturient relaxation in immunity against Teladorsagia circumcincta in sheep? Veterinary Parasitology 91, 4362.CrossRefGoogle ScholarPubMed
Houdijk, J. M., Jessop, N. S. and Kyriazakis, I. (2001). Nutrient partitioning between reproductive and immune functions in animals. Proceedings of the Nutritional Society 60, 515525.CrossRefGoogle ScholarPubMed
Jackson, F., Greer, A. W., Huntley, J., McAnulty, R. W., Bartley, D. J., Stanley, A., Stenhouse, L., Stankiewicz, M. and Sykes, A. R. (2004). Studies using Teladorsagia circumcincta in an in vitro direct challenge method using abomasal tissue explants. Veterinary Parasitology 124, 7389.CrossRefGoogle Scholar
Kahn, L. P., Kyriazakis, I., Jackson, F. and Coop, R. L. (2000). Temporal effects of protein nutrition on the growth and immunity of lambs infected with Trichostrongylus colubriformis. International Journal for Parasitology 30, 193205.CrossRefGoogle ScholarPubMed
Kambara, T., McFarlane, R. G., Abell, T. J., McAnulty, R. W. and Sykes, A. R. (1993). The effect of age and dietary-protein on immunity and resistance in lambs vaccinated with trichostrongylus-colubriformis. International Journal for Parasitology 23, 471476.CrossRefGoogle ScholarPubMed
Kao, R. R., Leathwick, D. M., Roberts, M. G. and Sutherland, I. A. (2000). Nematode parasites of sheep: a survey of epidemiological parameters and their application in a simple model. Parasitology 121, 85103.CrossRefGoogle ScholarPubMed
Kyriazakis, I., Anderson, D. H., Oldham, J. D., Coop, R. L. and Jackson, F. (1996). Long-term subclinical infection with Trichostrongylus colubriformis: effects on food intake, diet selection and performance of growing lambs. Veterinary Parasitology 61, 297313.CrossRefGoogle ScholarPubMed
Kyriazakis, I. and Emmans, G. C. (1995). The voluntary feed-intake of pigs given feeds based on wheat bran, dried citrus pulp and grass meal, in relation to measurements of feed bulk. British Journal of Nutrition 73, 191207.CrossRefGoogle ScholarPubMed
Kyriazakis, I., Tolkamp, B. J. and Hutchings, M. R. (1998). Towards a functional explanation for the occurrence of anorexia during parasitic infections. Animal Behaviour. 56, 265274.CrossRefGoogle ScholarPubMed
Langhans, W. (2000). Anorexia of infection: current prospects. Nutrition 16, 9961005.CrossRefGoogle ScholarPubMed
Leathwick, D. M., Barlow, N. D. and Vlassoff, A. (1992). A model for nematodiasis in new-zealand lambs. International Journal for Parasitology 22, 789799.CrossRefGoogle Scholar
Lewis, R. M., Macfarlane, J. M., Simm, G. and Emmans, G. C. (2004). Effects of food quality on growth and carcass composition in lambs of two breeds and their cross. Animal Science 78, 355367.CrossRefGoogle Scholar
Louie, K., Vlassoff, A. and Mackay, A. (2005). Nematode parasites of sheep: extension of a simple model to include host variability. Parasitology 130, 437446.CrossRefGoogle ScholarPubMed
Miller, J. E., Bahirathan, M., Lemarie, S. L., Hembry, F. G., Kearney, M. T. and Barras, S. R. (1998). Epidemiology of gastrointestinal nematode parasitism in Suffolk and Gulf Coast Native sheep with special emphasis on relative susceptibility to Haemonchus contortus infection. Veterinary Parasitology 74, 5574.CrossRefGoogle ScholarPubMed
Nieuwhof, G. J. and Bishop, S. C. (2005). Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Animal Science 81, 2329.CrossRefGoogle Scholar
Sandberg, F. B., Emmans, G. C. and Kyriazakis, I. (2006). A model for predicting feed intake of growing animals during exposure to pathogens. Journal of Animal Science 84, 15521566.CrossRefGoogle Scholar
Stear, M. J., Bishop, S. C., Doligalska, M., Duncan, J. L., Holmes, P. H., Irvine, J., McCririe, L., McKellar, Q. A., Sinski, E. and Murray, M. (1995). Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta. Parasite Immunology 17, 643652.CrossRefGoogle ScholarPubMed
Steel, J. W., Symons, L. E.  A. and Jones, W. O. (1980). Effects of level of larval intake on the productivity and physiological and metabolic responses of lambs infected with Trichostrongylus-colubriformis. Australian Journal of Agricultural Research 31, 821838.CrossRefGoogle Scholar
Sykes, A. R. (2000). Environmental effects on animal production: the nutritional demands of nematode parasite exposure in sheep. Asian Australasian Journal of Animal Sciences 13, 343350.Google Scholar
Vagenas, D., Bishop, S. C. and Kyriazakis, I. (2007). A model to account for the consequences of host nutrition on the outcome of gastrointestinal parasitism in sheep: model evaluation. Parasitology 134, 12631277.CrossRefGoogle Scholar
van Houtert, M. F.  J., Barger, I. A., Steel, J. W., Windon, R. G. and Emery, D. L. (1995). Effects of dietary protein on responses of young sheep to infection with Trichostrongylus colubriformis. Veterinary Parasitology 56, 163180.CrossRefGoogle ScholarPubMed
van Houtert, M. F.  J. and Sykes, A. R. (1996). Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections. International Journal for Parasitology 26, 11511167.CrossRefGoogle ScholarPubMed
Wallace, D. S., Bairden, K., Duncan, J. L., Fishwick, G., Gill, M., Holmes, PH., Mckellar, Q. A., Murray, M., Parkins, J. J. and Stear, M. J. (1995). Influence of supplementation with dietary soybean-meal on resistance to hemonchosis in hampshire down lambs. Research in Veterinary Science 58, 232237.CrossRefGoogle Scholar
Wellock, I. J., Emmans, G. C. and Kyriazakis, I. (2003). Predicting the consequences of social stressors on pig food intake and performance. Journal of Animal Science 81, 29953007.CrossRefGoogle ScholarPubMed
Wellock, I. J., Emmans, G. C. and Kyriazakis, I. (2004). Describing and predicting potential growth in the pig. Animal Science 78, 379388.CrossRefGoogle Scholar
Yin, X. Y., Goudriaan, J., Lantinga, E. A., Vos, J. and Spiertz, H. J. (2003). A flexible sigmoid function of determinate growth. Annals of Botany 91, 361371.CrossRefGoogle ScholarPubMed