Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T00:33:13.168Z Has data issue: false hasContentIssue false

Identification of Trichinella spiralis early antigens at the pre-adult and adult stages

Published online by Cambridge University Press:  19 November 2010

ALEKSANDAR ZOCEVIC*
Affiliation:
AFSSA, ENVA, UPEC, LERPAZ, JRU BIPAR, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
PAULINE MACE
Affiliation:
AFSSA, ENVA, UPEC, LERPAZ, JRU BIPAR, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
ISABELLE VALLEE
Affiliation:
AFSSA, ENVA, UPEC, LERPAZ, JRU BIPAR, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
RADU BLAGA
Affiliation:
AFSSA, ENVA, UPEC, LERPAZ, JRU BIPAR, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
MINGYUAN LIU
Affiliation:
Key Laboratory of Zoonoses, Ministry of Education, Institute of Zoonoses, Jilin University, 5333 Xian Road, 130062 Changchun, P.R.China
SANDRINE A. LACOUR
Affiliation:
AFSSA, ENVA, UPEC, LERPAZ, JRU BIPAR, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
PASCAL BOIREAU
Affiliation:
AFSSA, ENVA, UPEC, LERPAZ, JRU BIPAR, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
*
*Corresponding author: AFSSA, ENVA, UPEC, LERPAZ, JRU BIPAR, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France. E-mail: a.zocevic@gmail.com

Summary

Three expression cDNA libraries from Trichinella spiralis worms 14 h, 20 h and 48 h post-infection (p.i.) were screened with serum from pigs experimentally infected with 20 000 T. spiralis muscle larvae. Twenty-nine positive clones were isolated from the 14 h p.i. cDNA library, corresponding to 8 different genes. A putative excretory-secretory protein similar to that of T. pseudospiralis was identified. Three clones corresponded to a T. spiralis serine proteinase inhibitor known to be involved in diverse functions such as blood coagulation and modulation of inflammation. Screening of the 20 h p.i. cDNA library selected 167 positive clones representing 12 different sequences. The clone with the highest redundancy encoded a small polypeptide having no sequence identity with any known proteins from Trichinella or other organisms. Fourteen clones displayed sequence identity with the heat shock protein (HSP) 70. HSPs are produced as an adaptive response of the parasite to the hostile environment encountered in the host intestine but their mechanism of action is not yet well defined. From the 48 h p.i. T. spiralis cDNA library, 91 positive clones were identified representing 7 distinct sequences. Most of the positive clones showed high similarity with a member of a putative T. spiralis serine protease family. This result is consistent with a possible major role for serine proteases during invasive stages of Trichinella infection and host-parasite interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ancelle, T., De Bruyne, A., Poisson, D. and Dupouy-Camet, J. (2005). Outbreak of trichinellosis due to consumption of bear meat from Canada, France, September 2005. Euro Surveillance 10, E051013 051013.Google ScholarPubMed
Barker, G. C. and Bundy, D. A. (1999). Isolation of a gene family that encodes the porin-like proteins from the human parasitic nematode Trichuris trichiura. Gene 229, 131136.CrossRefGoogle ScholarPubMed
Bell, R. G. (1998). The generation and expression of immunity to Trichinella spiralis in laboratory rodents. Advances in Parasitology 41, 149217.CrossRefGoogle ScholarPubMed
Bell, R. G. and McGregor, D. D. (1979). Trichinella spiralis: role of different life cycle phases in induction, maintenance, and expression of rapid expulsion in rats. Experimental Parasitology 48, 5160.CrossRefGoogle ScholarPubMed
Bell, R. G., McGregor, D. D. and Despommier, D. D. (1979). Trichinella spiralis: mediation of the intestinal component of protective immunity in the rat by multiple, phase-specific, antiparasitic responses. Experimental Parasitology 47, 140157.CrossRefGoogle ScholarPubMed
Blaga, R., Durand, B., Antoniu, S., Gherman, C., Cretu, C. M., Cozma, V. and Boireau, P. (2007). A dramatic increase in the incidence of human trichinellosis in Romania over the past 25 years: impact of political changes and regional food habits. The American Journal of Tropical Medicine and Hygiene 76, 983986.CrossRefGoogle ScholarPubMed
Boireau, P., Mingyuan, L., Baoquan, F., Le Guerhier, F., Le Rhun, D., Hernandez-Bello, R., Bahuon, C. and Vallee, I. (2006). Utilisation de deux antigènes identifiés chez Trichinella, NBL1 et 411, pour le diagnostic précoce de la trichinellose. Patent 0601058. 7th February.Google Scholar
Boireau, P., Vallee, I., Le Guerhier, F., Blaga, R., Baoquan, F., Hernandez-Bello, R., Ortega Pierres, G. and Mingyuan, L. (2004). Trichinella antigens and immunodominant epitopes. Proceedings of the IX European Multicolloquium of Parasitology, 181188.Google Scholar
Boireau, P., Vayssier, M., Fabien, J. F., Perret, C., Calamel, M. and Soule, C. (1997). Characterization of eleven antigenic groups in Trichinella genus and identification of stage and species markers. Parasitology 115, 641651.CrossRefGoogle Scholar
Boscheinen, O., Lyck, R., Queitsch, C., Treuter, E., Zimarino, V. and Scharf, K. D. (1997). Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae. Molecular and General Genetics 255, 322331.CrossRefGoogle ScholarPubMed
Bruschi, F. (2002). The immune response to the parasitic nematode Trichinella and the ways to escape it. From experimental studies to implications for human infection. Current Drug Targets. Immune, Endocrine and Metabolic Disorders 2, 269280.CrossRefGoogle Scholar
Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle ScholarPubMed
Chomczynski, P. and Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protocols 1, 581585.CrossRefGoogle Scholar
Criado-Fornelio, A., De Armas-Serra, C., Gimenez-Pardo, C., Casado-Escribano, N., Jimenez-Gonzalez, A. and Rodriguez-Caabeiro, F. (1992). Proteolytic enzymes from Trichinella spiralis larvae. Veterinary Parasitology 45, 133140.CrossRefGoogle ScholarPubMed
Cwiklinski, K., Meskill, D., Robinson, M. W., Pozio, E., Appleton, J. A. and Connolly, B. (2009). Cloning and analysis of a Trichinella pseudospiralis muscle larva secreted serine protease gene. Veterinary Parasitology 159, 268271.CrossRefGoogle ScholarPubMed
Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16, 1088110890.CrossRefGoogle ScholarPubMed
Denkers, E. Y., Wassom, D. L., Krco, C. J. and Hayes, C. E. (1990). The mouse antibody response to Trichinella spiralis defines a single, immunodominant epitope shared by multiple antigens. Journal of Immunology 144, 31523159.CrossRefGoogle ScholarPubMed
Devine, R. (2003). La consommation des produits carnés. INRA Productions Animales 16, 325327.Google Scholar
Dupouy-Camet, J. (2000). Trichinellosis: a worldwide zoonosis. Veterinary Parasitology 93, 191200.CrossRefGoogle ScholarPubMed
Dzik, J. M. (2006). Molecules released by helminth parasites involved in host colonization. Acta Biochimica Polonica 53, 3364.CrossRefGoogle ScholarPubMed
Gamble, H. R., Bessonov, A. S., Cuperlovic, K., Gajadhar, A. A., Van Knapen, F., Nockler, K., Schenone, H. and Zhu, X. (2000). International Commission on Trichinellosis: recommendations on methods for the control of Trichinella in domestic and wild animals intended for human consumption. Veterinary Parasitology 93, 393408.CrossRefGoogle ScholarPubMed
Gamble, H. R., Rapic, D., Marinculic, A. and Murrell, K. D. (1988). Evaluation of excretory-secretory antigens for the serodiagnosis of swine trichinellosis. Veterinary Parasitology 30, 131137.CrossRefGoogle ScholarPubMed
Guiliano, D. B., Oksov, Y., Lustigman, S., Gounaris, K. and Selkirk, M. E. (2009). Characterisation of novel protein families secreted by muscle stage larvae of Trichinella spiralis. International Journal for Parasitology 39, 515524.CrossRefGoogle ScholarPubMed
James, E. R. and Denham, D. A. (1975). Immunity to Trichinella spiralis VI. The specificity of the immune response stimulated by the intestinal stage. Journal of Helminthology 49, 4347.Google ScholarPubMed
James, E. R., Moloney, A. and Denham, D. A. (1977). Immunity to Trichinella spiralis. VII. Resistance stimulated by the parenteral stages of the infection. The Journal of Parasitology 63, 720723.CrossRefGoogle ScholarPubMed
Kampinga, H. H. and Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews. Molecular Cell Biology 11, 579592.CrossRefGoogle ScholarPubMed
Kanamura, H. Y., Hancock, K., Rodrigues, V. and Damian, R. T. (2002). Schistosoma mansoni heat shock protein 70 elicits an early humoral immune response in S. mansoni infected baboons. Memorias do Instituto Oswaldo Cruz 97, 711716.CrossRefGoogle ScholarPubMed
Khan, A. Z. (1966). The postembryonic development of Trichinella spiralis with special reference to ecdysis. The Journal of Parasitology 52, 248259.CrossRefGoogle Scholar
Khumjui, C., Choomkasien, P., Dekumyoy, P., Kusolsuk, T., Kongkaew, W., Chalamaat, M. and Jones, J. L. (2008). Outbreak of trichinellosis caused by Trichinella papuae, Thailand, 2006. Emerging Infectious Diseases 14, 19131915.CrossRefGoogle ScholarPubMed
Kozek, W. J. (1971 a). The molting pattern in Trichinella spiralis. I. A light microscope study. The Journal of Parasitology 57, 10151028.CrossRefGoogle Scholar
Kozek, W. J. (1971 b). The molting pattern in Trichinella spiralis. II. An electron microscope study. The Journal of Parasitology 57, 10291038.CrossRefGoogle Scholar
Liu, M. Y., Wang, X. L., Fu, B. Q., Li, C. Y., Wu, X. P., Le Rhun, D., Chen, Q. J. and Boireau, P. (2007). Identification of stage-specifically expressed genes of Trichinella spiralis by suppression subtractive hybridization. Parasitology 134, 14431455.CrossRefGoogle ScholarPubMed
Liu, M. Y., Zhu, X. P., Xu, K. C., Lu, Q. and Boireau, P. (2001). Biological and genetic characteristics of two Trichinella isolates in China; comparison with European species. Parasite 8, S34S38.CrossRefGoogle Scholar
Mitreva, M., Appleton, J., Mccarter, J. P. and Jasmer, D. P. (2005). Expressed sequence tags from life cycle stages of Trichinella spiralis: application to biology and parasite control. Veterinary Parasitology 132, 1317.CrossRefGoogle ScholarPubMed
Mitreva, M. and Jasmer, D. P. (2006). Biology and genome of Trichinella spiralis. In Wormbook (ed. The C. elegans Research Community, WormBook). doi: 10.1895/wormbook1.124.1, http://www.wormbook.orgGoogle Scholar
Moczon, T. and Wranicz, M. (1999). Trichinella spiralis: proteinases in the larvae. Parasitology Research 85, 4758.CrossRefGoogle ScholarPubMed
Mohamed, R. M., Aosai, F., Chen, M., Mun, H. S., Norose, K., Belal, U. S., Piao, L. X. and Yano, A. (2003). Induction of protective immunity by DNA vaccination with Toxoplasma gondii HSP70, HSP30 and SAG1 genes. Vaccine 21, 28522861.CrossRefGoogle ScholarPubMed
Nagano, I., Wu, Z., Nakada, T., Boonmars, T. and Takahashi, Y. (2002). Molecular cloning and characterization of a novel protein of Trichinella pseudospiralis excretory-secretory products. Journal of Helminthology 76, 165170.CrossRefGoogle ScholarPubMed
Nagano, I., Wu, Z., Nakada, T., Matsuo, A. and Takahashi, Y. (2001 a). Molecular cloning and characterization of a 21 kDa protein secreted from Trichinella pseudospiralis. Journal of Helminthology 75, 273278.Google ScholarPubMed
Nagano, I., Wu, Z., Nakada, T., Matsuo, A. and Takahashi, Y. (2001 b). Molecular cloning and characterization of a serine proteinase inhibitor from Trichinella spiralis. Parasitology 123, 7783.CrossRefGoogle ScholarPubMed
Nagano, I., Wu, Z. and Takahashi, Y. (2009). Functional genes and proteins of Trichinella spp. Parasitology Research 104, 197207.CrossRefGoogle ScholarPubMed
Nakada, T., Nagano, I., Wu, Z. and Takahashi, Y. (2003). Molecular cloning and expression of the full-length tropomyosin gene from Trichinella spiralis. Journal of Helminthology 77, 5763.CrossRefGoogle ScholarPubMed
Nockler, K., Voigt, W. P., Protz, D., Miko, A. and Ziedler, K. (1995). Diagnosis of trichinellosis in living pigs using indirect ELISA. Berliner und Münchener tierärztliche Wochenschrift 108, 167174.Google ScholarPubMed
Philipp, M., Parkhouse, R. M. and Ogilvie, B. M. (1980). Changing proteins on the surface of a parasitic nematode. Nature, London 287, 538540.CrossRefGoogle ScholarPubMed
Philipp, M., Taylor, P. M., Parkhouse, R. M. and Ogilvie, B. M. (1981). Immune response to stage-specific surface antigens of the parasitic nematode Trichinella spiralis. The Journal of Experimental Medicine 154, 210215.CrossRefGoogle ScholarPubMed
Robinson, M. W., Massie, D. H. and Connolly, B. (2007). Secretion and processing of a novel multi-domain cystatin-like protein by intracellular stages of Trichinella spiralis. Molecular and Biochemical Parasitology 151, 917.CrossRefGoogle ScholarPubMed
Ros-Moreno, R. M., Vazquez-Lopez, C., Gimenez-Pardo, C., De Armas-Serra, C. and Rodriguez-Caabeiro, F. (2000). A study of proteases throughout the life cycle of Trichinella spiralis. Folia Parasitologica 47, 4954.CrossRefGoogle ScholarPubMed
Sambrook, J. and Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual, 3rd Edn.Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
Takahashi, Y. (1997). Antigens of Trichinella spiralis. Parasitology Today 13, 104106.CrossRefGoogle ScholarPubMed
Trap, C., Fu, B., Le Guerhier, F., Liu, M., Le Rhun, D., Romand, T., Perret, C., Blaga, R. and Boireau, P. (2006). Cloning and analysis of a cDNA encoding a putative serine protease comprising two trypsin-like domains of Trichinella spiralis. Parasitology Research 98, 288294.CrossRefGoogle ScholarPubMed
Vayssier, M., Le Guerhier, F., Fabien, J. F., Philippe, H., Vallet, C., Ortega-Pierres, G., Soule, C., Perret, C., Liu, M., Vega-Lopez, M. and Boireau, P. (1999). Cloning and analysis of a Trichinella britovi gene encoding a cytoplasmic heat shock protein of 72 kDa. Parasitology 119, 8193.CrossRefGoogle Scholar
Wakelin, D. and Goyal, P. K. (1996). Trichinella isolates: parasite variability and host responses. International Journal for Parasitology 26, 471481.CrossRefGoogle ScholarPubMed
Wang, S., Zhu, X., Yang, Y., Yang, J., Gu, Y., Wei, J., Hao, R., Boireau, P. and Cui, S. (2009 a). Molecular cloning and characterization of heat shock protein 70 from Trichinella spiralis. Acta Tropica 110, 4651.CrossRefGoogle ScholarPubMed
Wang, S. A., Chuang, J. Y., Yeh, S. H., Wang, Y. T., Liu, Y. W., Chang, W. C. and Hung, J. J. (2009 b). Heat shock protein 90 is important for Sp1 stability during mitosis. Journal of Molecular Biology 387, 11061119.CrossRefGoogle ScholarPubMed
Wieten, L., Broere, F., Van Der Zee, R., Koerkamp, E. K., Wagenaar, J. and Van Eden, W. (2007). Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Letters 581, 37163722.CrossRefGoogle ScholarPubMed
Wu, X. P., Fu, B. Q., Wang, X. L., Yu, L., Yu, S. Y., Deng, H. K., Liu, X. Y., Boireau, P., Wang, F. and Liu, M. Y. (2009). Identification of antigenic genes in Trichinella spiralis by immunoscreening of cDNA libraries. Veterinary Parasitology 159, 272275.CrossRefGoogle ScholarPubMed
Wu, Z., Nagano, I., Boonmars, T. and Takahashi, Y. (2007). Thermally induced and developmentally regulated expression of a small heat shock protein in Trichinella spiralis. Parasitology Research 101, 201212.CrossRefGoogle ScholarPubMed
Yang, Y., Jian, W. and Qin, W. (2010). Molecular cloning and phylogenetic analysis of small GTPase protein Tscdc42 from Trichinella spiralis. Parasitology Research 106, 801808.CrossRefGoogle ScholarPubMed
Zang, X. and Maizels, R. M. (2001). Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends in Biochemical Sciences 26, 191197.CrossRefGoogle ScholarPubMed
Zarlenga, D. S., Boyd, P., Lichtenfels, J. R., Hill, D. and Ray Gamble, H. (2002). Identification and characterisation of a cDNA sequence encoding a glutamic acid-rich protein specifically transcribed in Trichinella spiralis newborn larvae and recognised by infected swine serum. International Journal for Parasitology 32, 13611370.CrossRefGoogle ScholarPubMed
Zarlenga, D. S. and Dame, J. B. (1992). The identification and characterization of a break within the large subunit ribosomal RNA of Trichinella spiralis: comparison of gap sequences within the genus. Molecular and Biochemical Parasitology 51, 281289.CrossRefGoogle ScholarPubMed