Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T00:25:19.124Z Has data issue: false hasContentIssue false

Identification and characterization of a novel specific secreted protein family for selected members of the subfamily Ostertagiinae (Nematoda)

Published online by Cambridge University Press:  02 October 2007

H. SAVERWYNS
Affiliation:
Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
A. VISSER
Affiliation:
Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
A. J. NISBET
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, Scotland
I. PEELAERS
Affiliation:
Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
K. GEVAERT
Affiliation:
Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University and Flanders Interuniversity Institute for Biotechnology (VIB09), A. Baertsoenkaai 3, B-9000 Ghent, Belgium
J. VERCRUYSSE
Affiliation:
Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
E. CLAEREBOUT
Affiliation:
Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
P. GELDHOF*
Affiliation:
Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
*
*Corresponding author: Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. Tel: +32 92647387. Fax: +32 92647496. E-mail: peter.geldhof@UGent.be

Summary

It has been shown that the bovine abomasal parasite, Ostertagia ostertagi, drastically modulates its microenvironment, causing epithelial cell damage, accumulation of inflammatory cells and pH changes in the stomach. The mechanisms used by the parasite to change the abomasal environment are largely unknown, but an important role has been attributed to excretory-secretory (ES) products from the parasite. In this study we have identified proteins representing a novel ES protein family, characterized by the SCP/Tpx-1/Ag5/PR-1/Sc7 protein motif. These proteins were named Oo-AL1 and Oo-AL2 (O. ostertagi ASP-like protein). Both proteins contain a signal peptide and 1 predicted N-glycosylation site. The transcript for Oo-AL1 was present from the L4 stage onwards in both male and female adult worms, whereas the Oo-AL2 transcript was hardly detectable. Western blots of somatic extracts and ES products from different developmental stages of O. ostertagi, probed with anti-Oo-AL1 antibodies, revealed Oo-AL proteins in the ES products of adult worms. An analysis of the nematode genome and EST databases indicated that these novel ES proteins are unique to O. ostertagi and its relative, Teladorsagia circumcincta, suggesting a key function in these abomasal parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basse, C. W. (2005). Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiology 138, 17741784. doi: 10.1104/pp.105.061200.CrossRefGoogle ScholarPubMed
Bethony, J., Loukas, A., Smout, M., Brooker, S., Mendez, S., Plieskatt, J., Goud, G., Bottazzi, M. E., Zhan, B., Wang, Y., Williamson, A., Lustigman, S., Correa-Oliveira, R., Xiao, S., Hotez, P. J. (2005). Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. FASEB Journal 12, 17431745. doi: 10.1096/fj.05-3936fje.CrossRefGoogle Scholar
Claerebout, E. and Vercruysse, J. (2000). The immune response and the evolution of acquired immunity against gastrointestinal nematodes in cattle. Parasitology 120, S25S40.CrossRefGoogle Scholar
De Maere, V., Vercauteren, I., Saverwyns, H., Claerebout, E., Berx, G. and Vercruysse, J. (2002). Identification of potential protective antigens of Ostertagia ostertagi with local antibody probes. Parasitology 125, 383391. doi: 10.1016/j.molbiopara.2005.01.018.CrossRefGoogle ScholarPubMed
Dixon, D. C., Cutt, J. R. and Klessig, D. F. (1991). Differential targeting of the tobacco PR-1 pathogenesis-related proteins to the extracellular space and vacuoles of crystal idioblasts. The EMBO Journal 10, 13171324.CrossRefGoogle Scholar
Durrant, W. E. and Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology 42, 185209. doi: 10.1146/annurev.phyto.42.040803.140421.CrossRefGoogle ScholarPubMed
Frangioni, J. V. and Neel, B. G. (1993). Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Analytical Biochemistry 210, 179187. doi: 10.1006/abio.1993.1170.CrossRefGoogle ScholarPubMed
Geldhof, P., Claerebout, E., Knox, D. P., Agneessens, J. and Vercruysse, J. (2000). Proteinases released in vitro by the parasitic stages of the bovine abomasal nematode Ostertagia ostertagi. Parasitology 121, 639647. doi: 10.1017/S0031182000006806.CrossRefGoogle ScholarPubMed
Geldhof, P., Claerebout, E., Knox, D., Vercauteren, I., Looszova, A. and Vercruysse, J. (2002). Vaccination of calves against Ostertagia ostertagi with cysteine proteinase enriched protein fractions. Parasite Immunology 24, 263270. doi: 10.1046/j.1365-3024.2002.00461.x.CrossRefGoogle ScholarPubMed
Geldhof, P., Vercauteren, I., Gevaert, K., Staes, A., Knox, D. P., Vandekerckhove, J., Vercruysse, J. and Claerebout, E. (2003). Activation-associated secreted proteins are the most abundant antigens in a host protective fraction from Ostertagia ostertagi. Molecular and Biochemical Parasitology 128, 111114. doi: 10.1016/S0166-6851(03)00044-6.CrossRefGoogle Scholar
Geldhof, P., Vercauteren, I., Vercruysse, J., Knox, D. P., van den Broeck, W. and Claerebout, E. (2004). Validation of the protective Ostertagia ostertagi ES-thiol antigens with different adjuvantia. Parasite Immunology 26, 3743. doi: 10.1111/j.0141-9838.2004.00681.x.CrossRefGoogle ScholarPubMed
Geldhof, P., Whitton, C., Gregory, W. F., Blaxter, M. and Knox, D. P. (2005). Characterisation of the two most abundant genes in the Haemonchus contortus expressed sequence tag dataset. International Journal for Parasitology 35, 513522. doi: 10.1016/j.ijpara.2005.02.009.CrossRefGoogle ScholarPubMed
Hawdon, J. M., Jonest, B. F., Hoffman, D. R. and Hotez, P. J. (1996). Cloning and characterization of Ancylostoma-secreted protein. A novel protein associated with the transition to parasitism by infective hookworm larvae. The Journal of Biological Chemistry 271, 66726678.CrossRefGoogle ScholarPubMed
Hawdon, J. M., Narasimhan, S. and Hotez, P. J. (1999). Ancylostoma secreted protein 2: cloning and characterization of a second member of a family of nematode secreted proteins from Ancylostoma caninum. Molecular and Biochemical Parasitology 30, 149165. doi: 10.1016/S0166-6851(99)00011-0.CrossRefGoogle Scholar
Kasahara, M., Gutknecht, J., Brew, K., Spurr, N. and Goodfellow, P. N. (1989). Cloning and mapping of a testis-specific gene with sequence similarity to a sperm-coating glycoprotein gene. Genomics 5, 527534.CrossRefGoogle ScholarPubMed
Kent, W. J. and Zahler, A. M. (2000). Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment. Genome Research 10, 11151125.CrossRefGoogle Scholar
Klesius, P. H. (1993). Regulation of immunity to Ostertagia ostertagi. Veterinary Parasitology 46, 6379.CrossRefGoogle ScholarPubMed
Knox, D. P. (2000). Development of vaccines against gastrointestinal nematodes. Parasitology 20, S43S61.CrossRefGoogle Scholar
Kumar, S., Tamura, K. and Nei, M. (2004). MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle ScholarPubMed
Lu, G., Villalba, M., Coscia, M. R., Hoffman, D. R. and King, T. P. (1993). Sequence analysis and antigenic cross-reactivity of a venom allergen, antigen 5, from hornets, wasps, and yellow jackets. The Journal of Immunology 150, 28232830.CrossRefGoogle ScholarPubMed
McKellar, Q. A. (1993). Interactions of Ostertagia species with their bovine and ovine hosts. International Journal for Parasitology 23, 451462.CrossRefGoogle ScholarPubMed
Moser, J. M., Freitas, T., Arasu, P. and Gibson, G. (2005). Gene expression profiles associated with the transition to parasitism in Ancylostoma caninum larvae. Molecular and Biochemical Parasitology 143, 3948. doi: 10.1016/j.molbiopara.2005.04.012.CrossRefGoogle ScholarPubMed
Murray, J., Gregory, W. F., Gomez-Escobar, N., Atmadja, A. K. and Maizels, R. M. (2001). Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins. Molecular and Biochemical Parasitology 118, 8996. doi: 10.1016/S0166-6851(01)00374-7.CrossRefGoogle ScholarPubMed
Nagasaki, H., Arita, M., Nishizawa, T., Suwa, M. and Gotoh, O. (2005). Species-specific variation of alternative splicing and transcriptional initiation in six eukaryotes. Gene 30, 5362. doi: 10.1016/j.gene.2005.07.027.CrossRefGoogle Scholar
Parkinson, J., Mitreva, M., Whitton, C., Thomson, M., Daub, J., Martin, J., Schmid, R., Hall, N., Barrell, B., Waterston, R. H., McCarter, J. P. and Blaxter, M. L. (2004). A transcriptomic analysis of the phylum Nematoda. Nature Genetics 36, 12591267. doi: 10.1038/ng1472.CrossRefGoogle ScholarPubMed
Redmond, D. L., Smith, S. K., Halliday, A., Smith, W. D., Jackson, F., Knox, D. P. and Matthews, J. B. (2006). An immunogenic cathepsin F secreted by the parasitic stages of Teladorsagia circumcincta. International Journal for Parasitology 36, 277286.CrossRefGoogle ScholarPubMed
Schallig, H. D. F. H., Van Leeuwen, M. A. W., Cornelissen, A. W. C. A. (1997). Protective immunity induced by vaccination with two Haemonchus contortus excretory secretory proteins in sheep. Parasite Immunology 19, 447453. doi: 10.1046/j.1365-3024.1997.d01-148.x.CrossRefGoogle ScholarPubMed
Sheth, N., Roca, X., Hastings, M. L., Roeder, T., Krainer, A. R. and Sachidanandam, R. (2006). Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Research 34, 39553967. doi: 10.1093/nar/glk556.CrossRefGoogle ScholarPubMed
Simpson, H. V. (2000). Pathophysiology of abomasal parasitism: is the host or parasite responsible? The Veterinary Journal 160, 177191. doi: 10.1053/tvjl.2000.0491.CrossRefGoogle ScholarPubMed
Simpson, H. V., Simpson, B. H., Simcock, D. C., Reynolds, G. W. and Pomroy, W. E. (1999). Abomasal secretion in sheep receiving adult Ostertagia circumcinta that are prevented from contact with the mucosa. New Zealand Veterinary Journal 47, 2024.CrossRefGoogle Scholar
Van Loon, L. C. and Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55, 8597.CrossRefGoogle Scholar
Van Zeveren, A. M., Visser, A., Hoorens, P. R., Vercruysse, J., Claerebout, E. and Geldhof, P. (2007). Evaluation of reference genes for quantitative real-time PCR in Ostertagia ostertagi by the coefficient of variation and geNorm approach. Molecular and Biochemical Parasitology 153, 224227. doi: 10.1016/j.molbiopara.2007.03.005.CrossRefGoogle ScholarPubMed
Vercauteren, I., Geldhof, P., Peelaers, I., Claerebout, E., Berx, G. and Vercruysse, J. (2003). Identification of excretory-secretory products of larval and adult Ostertagia ostertagi by immunoscreening of cDNA libraries. Molecular and Biochemical Parasitology 126, 201208. doi: 10.1016/S0166-6851(02)00274-8.CrossRefGoogle ScholarPubMed