Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T20:18:57.778Z Has data issue: false hasContentIssue false

Fish tapeworms (Cestoda) in the molecular era: achievements, gaps and prospects

Published online by Cambridge University Press:  25 August 2022

Tomáš Scholz*
Affiliation:
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
Roman Kuchta
Affiliation:
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
*
Author for correspondence: Tomáš Scholz, E-mail: tscholz@paru.cas.cz

Abstract

The tapeworms of fishes (Chondrichthyes and Actinopterygii) account one-third (1670 from around 5000) of the total tapeworm (Platyhelminthes: Cestoda) species diversity. In total 1186 species from 9 orders occur as adults in elasmobranchs (sharks, rays and chimaeras), and 484 species from 8 orders mature in ray-finned fishes (referred to here as teleosts). Teleost tapeworms are dominated by freshwater species (78%), but only 3% of elasmobranch tapeworms are known from freshwater rays of South America and Asia (Borneo). In the last 2 decades, vast progress has been made in understanding species diversity, host associations and interrelationships among fish tapeworms. In total, 172 new species have been described since 2017 (149 from elasmobranchs and 23 from teleosts; invalidly described taxa are not included, especially those from the Oriental region). Molecular data, however, largely limited to a few molecular markers (mainly 28S rDNA, but also 18S and cox1), are available for about 40% of fish tapeworm species. They allowed us to significantly improve our understanding of their interrelationships, including proposals of a new, more natural classification at the higher-taxonomy level (orders and families) as well as at the lower-taxonomy level (genera). In this review, we summarize the main advances and provide perspectives for future research.

Type
Review Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, LM and Caira, JN (2014) Morphology meets molecules: a new genus and two new species of diphyllidean cestodes from the yellow spotted skate, Leucoraja wallacei, from South Africa. Journal of Parasitology 100, 323330.CrossRefGoogle Scholar
Alves, PV, de Chambrier, A, Scholz, T and Luque, JL (2017) Annotated checklist of fish cestodes from South America. ZooKeys 650, 1205.CrossRefGoogle Scholar
Alves, PV, de Chambrier, A, Luque, JL and Scholz, T (2020) Integrative taxonomy reveals hidden cestode diversity in Pimelodus catfishes in the Neotropics. Zoologica Scripta 50, 210224.CrossRefGoogle Scholar
Alves, PV, de Chambrier, A, Luque, JL, Takemoto, RM, Tavares, LER and Scholz, T (2021) New arrangement of three genera of fish tapeworms (Cestoda: Proteocephalidae) in catfishes (Siluriformes) from the Neotropical region: taxonomic implications of molecular phylogenetic analyses. Parasitology Research 120, 15931603.CrossRefGoogle ScholarPubMed
Appy, RG, Goffredi, SK, Pernet, B and Latino, C (2019) Experimental elucidation of the life cycle of Rhinebothrium urobatidium (Cestoda: Rhinebothriidea) from the round stingray (Urobatis halleri: Myliobatiformes) to first and second intermediate hosts. Bulletin of the Southern California Academy of Sciences 118, 139157.CrossRefGoogle Scholar
Ash, A, Scholz, T, Oros, M and Kar, PK (2011 a) Tapeworms (Cestoda: Caryophyllidea), parasites of Clarias batrachus (Pisces: Siluriformes) in the Indomalayan region. Journal of Parasitology 97, 435459.CrossRefGoogle ScholarPubMed
Ash, A, Scholz, T, Oros, M, Levron, C and Kar, PK (2011 b) Cestodes (Caryophyllidea) of the stinging catfish Heteropneustes fossilis (Siluriformes: Heteropneustidae) from Asia. Journal of Parasitology 97, 899907.CrossRefGoogle ScholarPubMed
Ash, A, Scholz, T, de Chambrier, A, Brabec, J, Oros, M, Kar, PK, Chavan, S and Mariaux, J (2012) Revision of Gangesia (Cestoda: Proteocephalidea) in the Indomalayan region: morphology, molecules and surface ultrastructure. PLoS ONE 7, e46421.CrossRefGoogle ScholarPubMed
Ash, A, de Chambrier, A, Shimazu, T, Ermolenko, A and Scholz, T (2015) An annotated list of the species of Gangesia Woodland, 1924 (Cestoda: Proteocephalidea), parasites of catfishes in Asia, with new synonyms and a key to their identification. Systematic Parasitology 91, 1333.CrossRefGoogle Scholar
Aznar, FJ, Agustí, C, Littlewood, DTJ, Raga, JA and Olson, PD (2007) Insight into the role of cetaceans in the life cycle of the tetraphyllideans (Platyhelminthes: Cestoda). International Journal for Parasitology 37, 243255.CrossRefGoogle ScholarPubMed
Barčák, D, Fan, C-K, Sonko, P, Kuchta, R, Scholz, T, Orosová, M, Chen, H-W and Oros, M (2021) Hidden diversity of the most basal tapeworms (Cestoda, Gyrocotylidea), the enigmatic parasites of holocephalans (Chimaeriformes). Scientific Reports 11, 5492.CrossRefGoogle ScholarPubMed
Bazsalovicsová, E, Králová-Hromadová, I, Štefka, J, Scholz, T, Hanzelová, V, Vávrová, S, Szemek, T and Kirk, R (2011) Population study of Atractolytocestus huronensis (Cestoda: Caryophyllidea), an invasive parasite of common carp introduced to Europe: mitochondrial cox1 haplotypes and intragenomic ribosomal ITS2 variants. Parasitology Research 109, 125131.CrossRefGoogle ScholarPubMed
Beveridge, I (2001) The use of life-cycle characters in studies of the evolution of cestodes. In Littlewood, DTJ and Bray, RA (eds), Interrelationships of the Platyhelminthes. The Systematics Association Special Volume Series 60. London, UK and New York, USA: Taylor & Francis, pp. 250256.Google Scholar
Beveridge, I, Haseli, M, Ivanov, V, Menoret, A and Schaeffner, BC (2017) Trypanorhyncha Diesing, 1863. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 401429. Available at http://hdl.handle.net/1808/24421.Google Scholar
Bloch, ME (1779) Beytrag zur Naturgeschichte der Würmer, welche in andern Thieren leben. Beschäftigungen der Berlinischen Gesellschaft Naturforschender Freunde 4, 534561.Google Scholar
Bouzid, W, Štefka, J, Hypša, V, Lek, S, Scholz, T, Legal, L, Hassine, OKB and Loot, G (2008) Geography and host specificity: two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). International Journal for Parasitology 38, 14651479.CrossRefGoogle ScholarPubMed
Brabec, J, Scholz, T, Králová-Hromadová, I, Baszalovicsová, E and Olson, PD (2012) Substitution saturation and nuclear paralogs of commonly employed phylogenetic markers in the Caryophyllidea, an unusual group of non-segmented tapeworms (Platyhelminthes). International Journal for Parasitology 42, 259267.CrossRefGoogle ScholarPubMed
Brabec, J, Waeschenbach, A, Scholz, T, Littlewood, DTJ and Kuchta, R (2015) Molecular phylogeny of the Bothriocephalidea (Cestoda): molecular data challenge morphological classification. International Journal for Parasitology 45, 761771.CrossRefGoogle ScholarPubMed
Brabec, J, Kuchta, R, Scholz, T and Littlewood, DJT (2016) Paralogues of nuclear ribosomal genes conceal phylogenetic signals within the invasive Asian fish tapeworm lineage: evidence from next generation sequencing data. International Journal for Parasitology 46, 555562.CrossRefGoogle ScholarPubMed
Brabec, J, Scholz, T and Štefka, J (2018) Development of polymorphic microsatellites for the invasive Asian fish tapeworm Schyzocotyle acheilognathi. Parasitology International 67, 341343.CrossRefGoogle ScholarPubMed
Bray, RA and Olson, PD (2004) The plerocercus of Ditrachybothridium macrocephalum Rees, 1959 from two deep-sea elasmobranchs, with a molecular analysis of its position within the order Diphyllidea and a checklist of the hosts of larval diphyllideans. Systematic Parasitology 59, 159167. doi: 10.1023/B:SYPA.0000048101.99985.dcCrossRefGoogle Scholar
Caira, JN and Jensen, K (2014) A digest of elasmobranch tapeworms. Journal of Parasitology 100, 373391.CrossRefGoogle ScholarPubMed
Caira, JN and Jensen, K (eds) (2017) Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25. Available at http://hdl.handle.net/1808/24421.Google Scholar
Caira, JN and Jensen, K (2021) Two new species of Caulobothrium (Cestoda: ‘Tetraphyllidea’) from the duckbill eagle ray, Aetomylaeus bovinus (Myliobatiformes: Myliobatidae), off Senegal with new insights on morphological features of the genus. Zootaxa 4903, 127139.CrossRefGoogle ScholarPubMed
Caira, JN and Jensen, K (2022) Diversity and phylogenetic relationships of ‘tetraphyllidean’ clade 3 (Cestoda) based on new material from orectolobiform sharks in Australia and Taiwan. Folia Parasitologica 69, 010.CrossRefGoogle ScholarPubMed
Caira, JN, Jensen, K and Healy, CJ (2001) Interrelationships among tetraphyllidean and lecanicephalidean cestodes. In Littlewood, DTJ and Bray, RA (eds), Interrelationships of the Platyhelminthes. London, UK: Taylor & Francis, pp. 135158.Google Scholar
Caira, JN, Mega, J and Ruhnke, TR (2005) An unusual blood sequestering tapeworm (Sanguilevator yearsleyi n. gen., n. sp.) from Borneo with description of Cathetocephalus resendezi n. sp. from Mexico and molecular support for the recognition of the order Cathetocephalidea (Platyhelminthes: Eucestoda). International Journal for Parasitology 35, 11351152.CrossRefGoogle Scholar
Caira, JN, Marques, FPL, Jensen, K, Kuchta, R and Ivanov, V (2013) Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea. International Journal for Parasitology 43, 621639.CrossRefGoogle ScholarPubMed
Caira, JN, Jensen, K, Waeschenbach, A, Olson, PD and Littlewood, DTJ (2014) Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology 44, 5573.CrossRefGoogle ScholarPubMed
Caira, JN, Jensen, K, Georgiev, BB, Kuchta, R, Littlewood, DTJ, Mariaux, J, Scholz, T, Tkach, VV and Waeschenbach, A (2017 a) An overview of the tapeworms of vertebrate bowels of the earth. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 120. Available at http://hdl.handle.net/1808/24421.Google Scholar
Caira, JN, Jensen, K and Ruhnke, TR (2017 b) ‘Tetraphyllidea’ van Beneden, 1850 relics. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 371400. Available at http://hdl.handle.net/1808/24421.Google Scholar
Caira, JN, Ivanov, VA, Jensen, K and Marques, FPL (2017 c) Diphyllidea van Beneden in Carus, 1863. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 149166. Available at http://hdl.handle.net/1808/24421.Google Scholar
Caira, JN, Gallagher, K and Jensen, K (2017 d) Litobothriidea Dailey, 1969. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 231241. Available at http://hdl.handle.net/1808/24421.Google Scholar
Caira, JN, Jensen, K and Ivanov, V (2017 e) Onchoproteocephalidea II Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 279304. Available at http://hdl.handle.net/1808/24421.Google Scholar
Caira, JN, Jensen, K, Hayes, C and Ruhnke, TR (2020 a) Insights from new cestodes of the crocodile shark, Pseudocarcharias kamoharai (Lamniformes: Pseudocarchariidae), prompt expansion of Scyphyophyllidum and formal synonymization of seven phyllobothriidean genera – at last!. Journal of Helminthology 94, E132.CrossRefGoogle ScholarPubMed
Caira, JN, Jensen, K, Pickering, M, Ruhnke, TR and Gallagher, KA (2020 b) Intrigue surrounding the life-cycles of species of Clistobothrium (Cestoda: Phyllobothriidea) parasitising large pelagic sharks. International Journal for Parasitology 50, 10431055.CrossRefGoogle ScholarPubMed
Caira, JN, Bueno, V and Jensen, K (2021 a) Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii). Zoological Journal of the Linnean Society 193, 13361363.CrossRefGoogle Scholar
Caira, JN, Otto, K, Fernando, D and Jensen, K (2021 b) Three new species of ‘tetraphyllidean’ cestodes from an undescribed bamboo shark (Orectolobiformes: Hemiscylliidae) in Sri Lanka. Folia Parasitologica 68, 004.CrossRefGoogle ScholarPubMed
Caira, JN, Jensen, K and Barbeau, E (eds) (2022) Global Cestode Database. World Wide Web electronic publication. Available at www.tapewormdb.uconn.edu (Accessed 15 June 2022).Google Scholar
Carus, JV (1863) V Classe. Platyhelminthes (C. Vogt) Ggbr., Plattwürmer. In Carus, JV (ed.), Handbuch der Zoologie. Raderthiere, Würmer, Echinodermen, Coelenteraten und Protozoen, Vol. II. Leipzig, Germany: Verlag von Wilhelm Engelmann, pp. 465484.Google Scholar
Chervy, L (2002) The terminology of larval cestodes or metacestodes. Systematic Parasitology 52, 133.CrossRefGoogle Scholar
Choudhury, A and Scholz, T (2020) Ex uno plures? Morphotype and lineage diversity of Bothriocephalus (Cestoda: Bothriocephalidea) in North American freshwater fishes. Journal of Parasitology 106, 589602.CrossRefGoogle ScholarPubMed
Conn, DB and Świderski, Z (2008) A standardised terminology of the embryonic envelopes and associated developmental stages of tapeworms (Platyhelminthes: Cestoda). Folia Parasitologica 55, 4252.CrossRefGoogle ScholarPubMed
de Chambrier, A, Zehnder, MP, Vaucher, C and Mariaux, J (2004) The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. Systematic Parasitology 57, 159171.CrossRefGoogle Scholar
de Chambrier, A, Waeschenbach, A, Fisseha, M, Scholz, T and Mariaux, J (2015) A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda). ZooKeys 500, 2559.Google Scholar
de Chambrier, A, Scholz, T, Mariaux, J and Kuchta, R (2017) Onchoproteocephalidea I Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 251277. Available at http://hdl.handle.net/1808/24421.Google Scholar
Dick, TA, Chambers, C and Isinguzo, I (2006) Cestoidea (Phylum Platyhelminthes). In Woo, PTK (ed.), Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections, 2nd Edn. Wallingford, UK: CAB International, pp. 391416. Available at doi: 10.1079/9780851990156.0391.CrossRefGoogle Scholar
Dubinina, MN (1987) Class tapeworms – Cestoda Rudolphi, 1808. In Bauer, ON (ed.), Key to the Parasites of Freshwater Fish of the USSR, Vol. 3. Leningrad, USSR: Nauka, pp. 576 (in Russian).Google Scholar
Eudy, E, Caira, JN and Jensen, K (2019) A new species of Pentaloculum (Cestoda: ‘Tetraphyllidea’) from the Taiwan saddled carpetshark, Cirrhoscyllium formosanum (Orectolobiformes: Parascylliidae). Journal of Parasitology 105, 303312.CrossRefGoogle ScholarPubMed
Fabricius, O (1794) Bidrag til Snylte-Ormenes Historie. Skrivter af Naturhistorie-Selskabet 3, 145.Google Scholar
Fraija-Fernández, N, Waeschenbach, A, Briscoe, A, Hocking, S, Kuchta, R, Nyman, T and Littlewood, DTJ (2021) Evolutionary transitions in broad tapeworms (Cestoda: Diphyllobothriidea) revealed by mitogenome and nuclear ribosomal operon phylogenetics. Molecular Phylogenetics and Evolution 163, 107262.CrossRefGoogle ScholarPubMed
Fripp, PJ and Mason, PR (1983) Spurious human infection with a trypanorhynchiid tapeworm. South African Journal of Science 79, 473.Google Scholar
Froese, R and Pauly, D (eds) (2022) FishBase. World Wide Web electronic publication. Available at http://www.fishbase.org (Accessed 1 July 2022).Google Scholar
Fyler, C and Caira, JN (2006) Five new species of Acanthobothrium (Tetraphyllidea: Onchobothriidae) from the freshwater stingray Himantura chaophraya (Batoidea: Dasyatidae) in Malaysian Borneo. Journal of Parasitology 92, 105125.CrossRefGoogle Scholar
Golzarianpour, K, Malek, M, Golestaninasab, M, Sarafrazi, A and Kochmann, J (2021) Two new enigmatic species of Rhinebothrium (Cestoda: Rhinebothriidae) from the Persian Gulf: notes on generic traits and host specificity. Systematics and Biodiversity 19, 273295.CrossRefGoogle Scholar
Grimmo, AEP and Buckley, JJC (1961) A pseudo-parasitic trypanorhynchid cestode larva in a Chinese. Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 306.Google Scholar
Healy, CJ (2006) Three new species of Rhinebothrium (Cestoda: Tetraphyllidea) from the freshwater whipray, Himantura chaophraya, in Malaysian Borneo. Journal of Parasitology 92, 364374.CrossRefGoogle ScholarPubMed
Healy, CJ, Caira, JN, Jensen, K, Webster, BL and Littlewood, DTJ (2009) Proposal for a new tapeworm order, Rhinebothriidea. International Journal for Parasitology 39, 497511.CrossRefGoogle ScholarPubMed
Heinz, HJ (1954) A case of tetrarhynchid (cestode) infection in man. Revista Ecuatoriana de Entomología y Parasitología 2, 227230.Google Scholar
Hoffman, GL (1999) Parasites of North American Freshwater Fishes. Ithaca, USA: Cornell University Press.CrossRefGoogle Scholar
Ikikuchi, V, Takenouchi, T, Kamiya, M and Ozaki, H (1981) Trypanorhynchiid cestode larva found on the human palatine tonsil. Japanese Journal of Parasitology 30, 497499.Google Scholar
International Helminth Genomes Consortium (2019) Comparative genomics of the major parasitic worm. Nature Genetics 51, 163174.CrossRefGoogle Scholar
Jensen, K (2005) Tapeworms of elasmobranchs (part I). A monograph on the Lecanicephalidea (Platyhelminthes, Cestoda). Bulletin of the University of Nebraska State Museum 18, 1241.Google Scholar
Jensen, K and Bullard, S (2010) Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life-cycles. International Journal for Parasitology 40, 889910.CrossRefGoogle ScholarPubMed
Jensen, K, Caira, JN, Cielocha, JJ, Littlewood, DTJ and Waeschenbach, A (2016) When proglottids and scoleces conflict: phylogenetic relationships and a family-level classification of the Lecanicephalidea (Platyhelminthes: Cestoda). International Journal for Parasitology 46, 291310.CrossRefGoogle Scholar
Jensen, K, Cielocha, JJ, Herzog, KS and Caira, JN (2017) Lecanicephalidea Hyman, 1951. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 207229. Available at http://hdl.handle.net/1808/24421.Google Scholar
Jensen, K, Pen, IAM and Caira, JN (2021) A revision of the Rhoptrobothriidae (Cestoda: Tetraphyllidea). Zootaxa 4999, 201218.CrossRefGoogle ScholarPubMed
Johri, GN (1956) A new cestode Senga lucknowensis from Mastacembellus armatus Lacep. Current Science 25, 193195.Google Scholar
Khalil, LF, Bray, RA and Jones, A (eds) (1994) Keys to the Cestode Parasites of Vertebrates. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Klimpel, S, Busch, MW, Kellermanns, E, Kleinertz, S and Palm, HW (2009) Metazoan Deep-Sea Fish Parasites. Solingen: Verlag Natur & Wissenschaft.Google Scholar
Kodedová, I, Doležel, D, Broučková, M, Jirků, M, Hypša, V, Lukeš, J and Scholz, T (2000) On the phylogenetic positions of the Caryophyllidea, Pseudophyllidea and Proteocephalidea (Eucestoda) inferred from 18S rRNA. International Journal for Parasitology 30, 11091113.CrossRefGoogle ScholarPubMed
Králová-Hromadová, I, Štefka, J, Špakulová, M, Orosová, M, Bombarová, M, Hanzelová, V, Bazsalovicsová, E and Scholz, T (2010) Intra-individual internal transcribed spacer 1 (ITS1) and ITS2 ribosomal sequence variation linked with multiple rDNA loci: a case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp. International Journal for Parasitology 40, 175181.CrossRefGoogle ScholarPubMed
Králová-Hromadová, I, Baszalovicsová, E, Oros, M and Scholz, T (2012) Sequence structure and intragenomic variability of ribosomal ITS2 in monozoic tapeworms of the genus Khawia (Cestoda: Caryophyllidea), parasites of cyprinid fish. Parasitology Research 111, 16211627.CrossRefGoogle ScholarPubMed
Králová-Hromadová, I, Radačovská, A, Čisovská Bazsalovicsová, E and Kuchta, R (2021) Ups and downs of infections with the broad fish tapeworm Dibothriocephalus latus in Europe from 1900 to 2020: part I. Advances in Parasitology 114, 75166.CrossRefGoogle ScholarPubMed
Králová, I, Van de Peer, Y, Jirků, M, van Ranst, M, Scholz, T and Lukeš, J (1997) Phylogenetic analysis of a fish tapeworm, Proteocephalus exiguus, based on the small subunit rRNA gene. Molecular and Biochemical Parasitology 84, 263266.Google ScholarPubMed
Kuchta, R and Scholz, T (2007) Diversity and distribution of fish tapeworms of the order ‘Bothriocephalidea’ (Eucestoda). Parassitologia 49, 129146.Google ScholarPubMed
Kuchta, R and Scholz, T (2017 a) Bothriocephalidea Kuchta, Scholz, Brabec & Bray, 2008. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 2945. Available at http://hdl.handle.net/1808/24421.Google Scholar
Kuchta, R and Scholz, T (2017 b) Spathebothriidea Wardle & McLeod, 1952. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 349356. Available at http://hdl.handle.net/1808/24421.Google Scholar
Kuchta, R, Scholz, T, Brabec, J and Bray, RA (2008 a) Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. International Journal for Parasitology 38, 4955.CrossRefGoogle ScholarPubMed
Kuchta, R, Scholz, T and Bray, RA (2008 b) Revision of the order Bothriocephalidea Kuchta, Scholz, Brabec & Bray, 2008 (Eucestoda) with amended generic diagnoses and keys to families and genera. Systematic Parasitology 71, 81136.CrossRefGoogle ScholarPubMed
Kuchta, R, Burianová, A, Jirků, M, de Chambrier, A, Oros, M, Brabec, J and Scholz, T (2012) Bothriocephalidean tapeworms (Cestoda) of freshwater fish in Africa, including erection of Kirstenella n. gen. and description of Tetracampos martinae n. sp. Zootaxa 3309, 135.CrossRefGoogle Scholar
Kuchta, R, Pearson, R, Scholz, T, Ditrich, O and Olson, PD (2014) Spathebothriidea: survey of species, scolex and egg morphology, and interrelationships of a non-segmented, relictual tapeworm group (Platyhelminthes: Cestoda). Folia Parasitologica 61, 331346.CrossRefGoogle ScholarPubMed
Kuchta, R, Serrano-Martinez, ME and Scholz, T (2015) Pacific broad tapeworm Adenocephalus pacificus as a causative agent of globally reemerging Diphyllobothriosis. Emerging Infectious Diseases 21, 16971703.CrossRefGoogle ScholarPubMed
Kuchta, R, Scholz, T and Hansen, H (2017) Gyrocotylidea Poche, 1926. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 191199. Available at http://hdl.handle.net/1808/24421.Google Scholar
Kuchta, R, Choudhury, A and Scholz, T (2018) Asian fish tapeworm: the most successful invasive parasite in freshwaters. Trends in Parasitology 34, 511523.CrossRefGoogle ScholarPubMed
Kuchta, R, Řehulková, E, Francová, K, Scholz, T, Morand, S and Šimková, A (2020) Diversity of monogeneans and tapeworms in cypriniform fishes across two continents. International Journal for Parasitology 50, 771786.CrossRefGoogle ScholarPubMed
Kvach, Y, Drobiniak, O, Kutsokon, Y and Hoch, I (2013) The parasites of the invasive Chinese sleeper Perccottus glenii (fam. Odontobutidae), with the first report of Nippotaenia mogurndae in Ukraine. Knowledge and Management of Aquatic Ecosystems 409, 05.CrossRefGoogle Scholar
Last, P, White, W, de Carvalho, M, Séret, B, Stehmann, M and Naylor, G (eds) (2016) Rays of the World. Melbourne, Australia: CSIRO Publishing.CrossRefGoogle Scholar
Li, WX, Zhang, D, Boyce, K, Xi, BW, Zou, H, Wu, SG, Li, M and Wang, GT (2017) The complete mitochondrial DNA of three monozoic tapeworms in the Caryophyllidea: a mitogenomic perspective on the phylogeny of eucestodes. Parasites & Vectors 10, 314.CrossRefGoogle ScholarPubMed
Linnaeus, C (1758) Systema Naturale Per Regna Tria Naturale, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Editio decimal, reformata 1. Holmiæ (Stockholm): Laurentii Salvii.Google Scholar
Littlewood, DTJ (2006) The evolution of parasitism in flatworms. In Maule, AG and Marks, NJ (eds), Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Physiology. Wallingford, UK: CABI International, pp. 136. Available at doi: 10.1079/9780851990279.0001.Google Scholar
Liu, D-W, Kato, H and Sugane, K (1997) The nucleotide sequence and predicted secondary structure of small subunit (18S) ribosomal RNA from Spirometra erinaceieuropaei. Gene 184, 221227.CrossRefGoogle ScholarPubMed
Löbl, I (2018) Assessing biotic diversity: the glorious past, present, and the uncertain future. Bulletin of the Entomological Society of Malta 10, 515.Google Scholar
Mariaux, J (1998) A molecular phylogeny of the Cestoda. Journal of Parasitology 84, 114124.CrossRefGoogle Scholar
Mariaux, J, Tkach, VV, Vasileva, GP, Waeschenbach, A, Beveridge, I, Dimitrova, Y, Haukisalmi, V, Greiman, SE, Littlewood, DTJ, Makarikov, AA, Phillips, AJ, Razafiarisolo, T, Widmer, V and Georgiev, BB (2017) Cyclophyllidea van Beneden in Braun, 1900. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 77148. Available at http://hdl.handle.net/1808/24421.Google Scholar
Marques, FPL, Brooks, DR and Araujo, MLG (2003) Systematics and phylogeny of Potamotrygonocestus (Platyhelminthes, Tetraphyllidea, Onchobothriidae) with descriptions of three new species from freshwater potamotrygonids (Myliobatoidei, Potamotrygonidae). Zoologica Scripta 34, 367396.CrossRefGoogle Scholar
Mierzejewska, K, Kvach, Y, Woźniak, M and Kosowska, A (2012) Parasites of an Asian fish, the Chinese sleeper Perccottus glenii, in the Włocławek Reservoir on the lower Vistula River, Poland: in search of the key species in the host expansion process. Comparative Parasitology 79, 2329.CrossRefGoogle Scholar
Müller, OF (1776) Zoologiae Danicae Prodromus: seu Animalium Daniae et Norvegiae Indigenarum; Characteres, Nomina, et Synonyma Imprimis Popularium. Havniae (Copenhagen): Typis Hallageriis.Google Scholar
Naylor, GJP, Caira, JN, Jensen, K, Rosana, KAM, Straube, N and Lakner, C (2012 a) Elasmobranch phylogeny: a mitochondrial estimate based on 595 species. In Carrier, JC, Musick, JA and Heithaus, MR (eds), The Biology of Sharks and Their Relatives. Boca Raton, FL, USA: CRC Press, pp. 3156. Available at doi: 10.1201/b11867.Google Scholar
Naylor, GJP, Caira, JN, Jensen, K, Rosana, KAM, White, WT and Last, PR (2012 b) A DNA sequence-based approached to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History 367, 1262.CrossRefGoogle Scholar
Olson, PD and Caira, JN (1999) Evolution of the major lineages of tapeworms (Platyhelminthes: Cestoidea) inferred from 18S ribosomal DNA and elongation factor-1a. Journal of Parasitology 85, 11341159.CrossRefGoogle Scholar
Olson, PD, Littlewood, DTJ, Bray, RA and Mariaux, J (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 19, 443467.CrossRefGoogle ScholarPubMed
Olson, PD, Caira, JN, Jensen, K, Overstreet, RM, Palm, HW and Beveridge, I (2010) Evolution of the trypanorhynch tapeworms: parasite phylogeny supports independent lineages of sharks and rays. International Journal for Parasitology 40, 223242.CrossRefGoogle ScholarPubMed
Oros, M, Hanzelová, V and Scholz, T (2004) The cestode Atractolytocestus huronensis (Caryophyllidea) continues to spread in Europe: new data on the helminth parasite of the common carp. Diseases of Aquatic Organisms 62, 115119.CrossRefGoogle ScholarPubMed
Oros, M, Scholz, T and Hanzelová, V (2009) Tapeworm Khawia sinensis: review of the introduction and subsequent decline of a pathogen of carp, Cyprinus carpio. Veterinary Parasitology 164, 217222.CrossRefGoogle ScholarPubMed
Oros, M, Scholz, T, Hanzelová, V and Mackiewicz, JS (2010) Scolex morphology of monozoic cestodes (Caryophyllidea) from the Palaearctic region: a useful tool for species identification. Folia Parasitologica 57, 3746.CrossRefGoogle ScholarPubMed
Palm, HW (2004) The Trypanorhyncha Diesing, 1863. Bogor, Indonesia: PKSPL-IPB Press.Google Scholar
Palm, HW, Waeschenbach, A and Littlewood, DTJ (2007) Genetic diversity in the trypanorhynch cestode Tentacularia coryphaenae Bosc, 1797: evidence for a cosmopolitan distribution and low host specificity in the teleost intermediate host. Parasitology Research 101, 153159.CrossRefGoogle ScholarPubMed
Palm, HW, Waeschenbach, A, Olson, PD and Littlewood, DTJ (2009) Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 52, 351367.CrossRefGoogle ScholarPubMed
Pleijel, F, Jondelius, U, Norlinder, E, Nygren, A, Oxelman, B, Schander, C, Sundberg, P and Thollesson, M (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48, 369371.CrossRefGoogle Scholar
Poulin, R and Presswell, B (2016) Taxonomic quality of species descriptions varies over time and with the number of authors, but unevenly among parasitic taxa. Systematic Biology 65, 11071116.CrossRefGoogle ScholarPubMed
Poulin, R, Blasco-Costa, I and Randhawa, HS (2016) Integrating parasitology and marine ecology: seven challenges towards greater synergy. Journal of Sea Research 113, 310.CrossRefGoogle Scholar
Randhawa, HS and Poulin, R (2010) Determinants of tapeworm richness in elasmobranch fishes: untangling environmental and phylogenetic influences. Ecography 33, 866877.CrossRefGoogle Scholar
Randhawa, HS and Poulin, R (2019) Tapeworm discovery in elasmobranch fishes: quantifying patterns and identifying their correlates. Marine and Freshwater Research 71, 7888.CrossRefGoogle Scholar
Redi, F (1684) Osservazioni di Francesco Redi Accademico Della Crusca. Intorno agli Animali Viventi che si Trovano negli Animali Viventi. Firenze: Piero Matini.Google Scholar
Reis, RE, Albert, JS, Di Dario, F, Mincarone, MM, Petry, P and Rocha, LA (2016) Fish biodiversity and conservation in South America. Journal of Fish Biology 89, 1247.CrossRefGoogle Scholar
Reyda, FB and Marques, FPL (2011) Diversification and species boundaries of Rhinebothrium (Cestoda; Rhinebothriidea) in South American freshwater stingrays (Batoidea; Potamotrygonidae). PLoS ONE 6, 2260122626.CrossRefGoogle ScholarPubMed
Ride, WDL, Cogger, HG, Dupuis, C, Kraus, O, Minelli, A, Thompson, FC and Tubbs, PK (1999) International Code of Zoological Nomenclature. London, UK: The Natural History Museum. Available at https://www.iczn.org/the-code/the-code-online/.Google Scholar
Ruhnke, TR (2011) Tapeworms of elasmobranchs (part III). A monograph on the Phyllobothriidae (Platyhelminthes: Cestoda). Bulletin of the University of Nebraska State Museum 25, 1205.Google Scholar
Ruhnke, TR, Caira, JN and Cox, A (2015) The cestode order Rhinebothriidea no longer family-less: a molecular phylogenetic investigation with erection of two new families and description of eight new species of Anthocephalum. Zootaxa 3904, 5181.CrossRefGoogle ScholarPubMed
Ruhnke, TR, Caira, JN and Pickering, M (2017) Phyllobothriidea Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 305326. Available at http://hdl.handle.net/1808/24421.Google Scholar
Ruszkowski, JS (1934) Etudes sur the cycle évolutif et sur la structure des Cestodes de mer. 3ème partie. Le cycle évolutif du Tétrarhynque Grillotia erinaceus (van Beneden, 1858). Mémoires de l'Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série B 6, 19.Google Scholar
Sadeghi Kamachali, M and Haseli, M (2022) Three new species of Anthobothrium van Beneden, 1850 (Cestoda: ‘Tetraphyllidea’) from the grey sharpnose shark Rhizoprionodon oligolinx Springer, 1964 (Carcharhinidae) in the Persian Gulf. Parasitology Research 121, 143154.CrossRefGoogle Scholar
Schmidt, GD (1986) CRC Handbook of Tapeworm Identification. Boca Raton, FL, USA: CRC Press.Google Scholar
Scholz, T and de Chambrier, A (2012) A new genus and species of proteocephalidean tapeworm (Cestoda) from Pangasius larnaudii (Siluriformes: Pangasiidae) in Southeast Asia. Journal of Parasitology 98, 648653.CrossRefGoogle Scholar
Scholz, T and Kuchta, R (2016) Fish-borne, zoonotic cestodes (Diphyllobothrium and relatives) in cold climates: a never-ending story of neglected and (re)-emergent parasites. Food and Waterborne Parasitology 4, 2328.CrossRefGoogle Scholar
Scholz, T and Kuchta, R (2017 a) A digest of fish tapeworms. Vie et Milieu 67, 4358.Google Scholar
Scholz, T and Kuchta, R (2017 b) Amphilinidea Poche, 1922. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 2128. Available at http://hdl.handle.net/1808/24421.Google Scholar
Scholz, T and Oros, M (2017) Caryophyllidea van Beneden in Carus, 1863. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 4764. Available at http://hdl.handle.net/1808/24421.Google Scholar
Scholz, T, Kuchta, R and Williams, C (2012) Bothriocephalus achelognathi. In Woo, PTK and Buchmann, K (eds), Fish Parasites. Pathobiology and Protection. Wallingford, UK: CAB International, pp. 282297. Available at doi: 10.1079/9781845938062.0000.CrossRefGoogle Scholar
Scholz, T, Oros, M, Bazsalovicsová, E, Brabec, J, Waeschenbach, A, Xi, B-W, Aydogdu, A, Besprozvannykh, V, Shimazu, T, Králová-Hromadová, I and Littlewood, DTJ (2014) Molecular evidence of cryptic diversity in Paracaryophyllaeus (Cestoda: Caryophyllidea), parasites of loaches (Cobitidae) in Eurasia, including description of P. vladkae n. sp. Parasitology International 63, 841850.CrossRefGoogle ScholarPubMed
Scholz, T, Tavakol, S, Halajian, A and Luus-Powell, WJ (2015) The invasive fish tapeworm Atractolytocestus huronensis (Cestoda), a parasite of carp, colonises Africa. Parasitology Research 114, 35213524.CrossRefGoogle ScholarPubMed
Scholz, T, Brabec, J and Kuchta, R (2017) Nippotaeniidea Yamaguti, 1939. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 243250. Available at http://hdl.handle.net/1808/24421.Google Scholar
Scholz, T, Barčák, D and Oros, M (2018 a) The occurrence of the non-native tapeworm Khawia japonensis (Yamaguti, 1934) (Cestoda) in cultured common carp in the Czech Republic confirms its recent expansion in Europe. BioInvasions Records 7, 303308.CrossRefGoogle Scholar
Scholz, T, Vanhove, MPM, Smit, N, Jayasundera, Z and Gelnar, M (eds) (2018 b) A Guide to the Parasites of African Freshwater Fishes. ABC Taxa, Vol. 18. Brussels, Belgium: CEBioS, Royal Belgian Institute of Natural Sciences, 424 pp.Google Scholar
Scholz, T, Kuchta, R and Brabec, J (2019) Broad tapeworms (Diphyllobothridae), parasites of wildlife and humans: recent progress and future challenges. International Journal for Parasitology: Parasites and Wildlife 9, 359369.Google Scholar
Scholz, T, Tavakol, S and Luus-Powell, W (2020) First adult cyclophyllidean tapeworm (Cestoda) from teleost fishes: host-switching beyond tetrapods in Africa. International Journal for Parasitology 50, 561568.CrossRefGoogle ScholarPubMed
Scholz, T, Waeschenbach, A, Oros, M, Brabec, J and Littlewood, DTJ (2021 a) Phylogenetic reconstruction of early diverging tapeworms (Cestoda: Caryophyllidea) reveals ancient radiations in vertebrate hosts and biogeographic regions. International Journal for Parasitology 51, 263277.CrossRefGoogle ScholarPubMed
Scholz, T, Kuchta, R and Oros, M (2021 b) Tapeworms as pathogens of fish: a review. Journal of Fish Diseases 44, 18831900.CrossRefGoogle ScholarPubMed
Scholz, T, Davidovich, N, Aflalo, O, Hadar, S, Mazuz, ML and Yasur-Landau, D (2021 c) Invasive Amirthalingamia macracantha (Cestoda: Cyclophyllidea) larvae infecting tilapia hybrids in Israel: a potential threat for aquaculture. Diseases of Aquatic Organisms 145, 185190.CrossRefGoogle Scholar
Scholz, T, Biswas, R, Patra, BK and Ash, A (2022 a) A new genus of caryophyllidean tapeworms (Cestoda) from Mystus catfishes (Bagridae) in India: cleaning up taxonomic chaos. Journal of Helminthology 96, e25.CrossRefGoogle ScholarPubMed
Scholz, T, Choudhury, A and McAllister, CT (2022 b) A young parasite in an old fish host: a new genus for proteocephalid tapeworms (Cestoda) of bowfin (Amia calva) (Holostei: Amiiformes) in North America, and a revised list of its cestodes. International Journal for Parasitology: Parasites and Wildlife 18, 101111.Google Scholar
Šimková, A, Řehulková, E, Rasoloariniaina, JR, Jorissen, MWP, Scholz, T, Faltýnková, A, Mašová, Š and Vanhove, MPM (2019) Transmission of parasites from introduced tilapias: a new threat to endemic Malagasy ichthyofauna. Biological Invasions 21, 803819.CrossRefGoogle Scholar
Southwell, T (1929) A monograph on cestodes of the order Trypanorhyncha from Ceylon and India, part 1. Ceylon Journal of Science, Section B 15, 169317.Google Scholar
Stephan, D and Caira, JN (2022) Three new species of Duplicibothrium (Cestoda: ‘Tetraphyllidea’) from cownose rays in Senegal with a phylogenetic analysis of the genus. Journal of Helminthology 96, E8.CrossRefGoogle ScholarPubMed
Trevisan, B, Primon, JF and Marques, FPL (2017) Systematics and diversification of Anindobothrium Marques, Brooks & Lasso, 2001 (Eucestoda: Rhinebothriidea). PLoS ONE 12, e0184632.CrossRefGoogle ScholarPubMed
Trevisan, B, Alcantara, DMC, Machado, DJ, Marques, FPL and Lahr, DJG (2019) Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ 7, e7543.CrossRefGoogle ScholarPubMed
Trevisan, B, Jacob Machado, D, Lahr, DJG and Marques, FPL (2021) Comparative characterization of mitogenomes from five orders of cestodes (Eucestoda: tapeworms). Frontiers in Genetics 12, 788871.CrossRefGoogle ScholarPubMed
Tyler, GA (2006) Tapeworms of elasmobranchs (part II). A monograph on the Diphyllidea (Platyhelminthes, Cestoda). Bulletin of the University of Nebraska State Museum 20, 1142.Google Scholar
Uhrovič, D, Oros, M, Kudlai, O, Choudhury, A and Scholz, T (2021 a) Molecular evidence of three closely related species of Biacetabulum Hunter, 1927 (Cestoda: Caryophyllidea): a case of recent speciation in different fish hosts (Catostomidae)? Parasitology 148, 10401056.CrossRefGoogle ScholarPubMed
Uhrovič, D, Oros, M, Reyda, F, Kudlai, O and Scholz, T (2021 b) Redescription of Biacetabulum giganteum Hunter, 1929 (Cestoda: Caryophyllidea), description of two new, closely related species from suckers (Catostomidae) in North America, and a critical review of host specificity of species of Biacetabulum Hunter, 1927. Systematics and Biodiversity 19, 10621079.CrossRefGoogle Scholar
Uhrovič, D, Oros, M, Kudlai, O, Kuchta, R and Scholz, T (2022) Archigetes Leuckart, 1878 (Cestoda: Caryophyllidea): diversity of enigmatic fish tapeworms with monoxenic life cycles. Parasite 29, 6.CrossRefGoogle ScholarPubMed
Van Beneden, PJ (1850) Recherches sur la faune littorale de Belgique. Les vers cestoides, considérés sous le rapport physiologique, embryogénique et zooclassique. Mémoires de l'Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 25, 1199, 201–204.Google Scholar
Van Der Spuy, L, Smit, NJ and Schaeffner, BC (2022) Threatened, host-specific affiliates of a red-listed host: three new species of Acanthobothrium van Beneden, 1849 (Cestoda: Onchoproteocephalidea) from the endangered white skate, Rostroraja alba (Lacépède). International Journal for Parasitology: Parasites and Wildlife 17, 114126.Google Scholar
Waeschenbach, A and Littlewood, DTJ (2017) A molecular framework for the Cestoda. In Caira, JN and Jensen, K (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence, KS, USA: University of Kansas, Natural History Museum, Special Publication No. 25, pp. 431451. Available at http://hdl.handle.net/1808/24421.Google Scholar
Waeschenbach, A, Webster, BL, Bray, RA and Littlewood, DTJ (2007) Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogenetics and Evolution 45, 311325.CrossRefGoogle ScholarPubMed
Waeschenbach, A, Webster, BL and Littlewood, DTJ (2012) Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Molecular Phylogenetics and Evolution 63, 834847.CrossRefGoogle ScholarPubMed
Waeschenbach, A, Brabec, J, Scholz, T, Littlewood, DTJ and Kuchta, R (2017) The catholic taste of broad tapeworms – multiple routes to human infection. International Journal for Parasitology 47, 831843.CrossRefGoogle ScholarPubMed
Wardle, RA and McLeod, JA (1952) The Zoology of Tapeworms. Minneapolis, MN, USA: University of Minnesota Press.Google Scholar
Williams, HH and Jones, A (1994) Parasitic Worms of Fish. London, UK: Taylor & Francis.CrossRefGoogle Scholar
Yamaguti, S (1959) Systema Helminthum. Vol. II. The Cestodes of Vertebrates. Tokyo, Japan: Keigaku Publishing House.Google Scholar
Yera, H, Kuchta, R, Brabec, J, Peyron, F and Dupouy-Camet, J (2013) First identification of eggs of the Asian fish tapeworm Bothriocephalus acheilognathi (Cestoda: Bothriocephalidea) in human stool. Parasitology International 62, 268271.CrossRefGoogle ScholarPubMed