Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T22:18:14.856Z Has data issue: false hasContentIssue false

Enzymatic activities linked to cardiac energy metabolism of Trypanosoma evansi-infected rats and their possible functional correlations to disease pathogenesis

Published online by Cambridge University Press:  11 March 2015

MATHEUS D. BALDISSERA*
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
VIRGINIA C. RECH
Affiliation:
Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
MATEUS GRINGS
Affiliation:
Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
LUCAS T. GRESSLER
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
RODRIGO A. VAUCHER
Affiliation:
Laboratory of Microbiology, Centro Universitário Franciscano, Santa Maria, RS, Brazil
CLAITON I. SCHWERTZ
Affiliation:
Section of Veterinary Pathology, Instituto Federal Catarinense, Concórdia, SC, Brazil
RICARDO E. MENDES
Affiliation:
Section of Veterinary Pathology, Instituto Federal Catarinense, Concórdia, SC, Brazil
GUILHIAN LEIPNITZ
Affiliation:
Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
LENITA M. STEFANI
Affiliation:
Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
SILVIA G. MONTEIRO
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
ALEKSANDRO S. DA SILVA*
Affiliation:
Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
*
*Corresponding author. Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil. E-mail: matheusd.biomed@yahoo.com.br and aleksandro_ss@yahoo.com.br
*Corresponding author. Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil. E-mail: matheusd.biomed@yahoo.com.br and aleksandro_ss@yahoo.com.br

Summary

The aim of this study was to investigate the activities of important enzymes involved in the phosphoryl transfer network (adenylate kinase and creatine kinase (CK)), lactate dehydrogenase (LDH), respiratory chain complexes and biomarkers of cardiac function in rat experimentally infected by Trypanosoma evansi. Rat heart samples were evaluated at 5 and 15 days post-infection (PI). At 5 day PI, there was an increase in LDH and CK activities, and a decrease in respiratory chain complexes II, IV and succinate dehydrogenase activities. In addition, on day 15 PI, a decrease in the respiratory chain complex IV activity was observed. Biomarkers of cardiac function were higher in infected animals on days 5 and 15 PI. Considering the importance of the energy metabolism for heart function, it is possible that the changes in the enzymatic activities involved in the cardiac phosphotransfer network and the decrease in respiratory chain might be involved partially in the role of biomarkers of cardiac function of T. evansi-infected rats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, S. (2012). The power of life – cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 12, 4656.Google Scholar
Baéz, A. L., Lopresti, M. S., Fretes, R., Díaz, C., Pons, P., Bazán, P. C., Strauss, M., Rivarola, H. W. and Paglini-Oliva, P. (2013). Chronic indeterminate phase of Chaga's disease: mitochondrial involvement in infection with two strains. Parasitology 143, 414421.Google Scholar
Baldisseraa*, M. D., Oliveira, C. B., Rech, V. C., Rezer, J. F. P., Sagrillo, M. R., Alves, M. P., Silva, A. P. T., da, Leal, D. B. R., Boligon, A. A., Athayde, M. L., Da Silva, A. S., Mendes, R. E., and Monteiro, S. G., (2014). Treatment with essential oil of Achyrocline satureioides in rats infected with Trypanosoma evansi: Relationship between protective effect and tissue damage. Pathology, research and practice 210, 10681074.Google Scholar
Bal, M. S., Singla, L. D., Kumar, H., Vasudev, A., Gupta, K. and Juyal, P. D. (2012). Pathological studies on experimental Trypanosoma evansi infection in Swiss albino mice. Journal Parasitic Diseases 36, 260264.Google Scholar
Bottomley, P. A., Wu, K. C., Gerstenblith, G., Schulman, S. P., Steinberg, A. and Weiss, R. G. (2009). Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation 119, 19181924.CrossRefGoogle Scholar
Brdiczca, D., Kaldis, P. and Wallimann, T. (1994). In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. Journal of Biological Chemistry 269, 2764027644.Google Scholar
Carvajal, K. and Moreno-Sanchez, R. (2003). Heart metabolic disturbances in cardiovascular diseases. Archives of Medical Research 34, 8999.Google Scholar
Chen, Y. R. and Zweier, J. L. (2014). Cardiac mitochondria and reactive oxygen species generation. CirculationResearch 114, 524537.Google ScholarPubMed
Colpo, C. B., Monteiro, S. G., Stainki, D. R., Colpo, E. T. B. and Henriques, G. B. (2005). Natural infectionbyTrypanosoma evansi in dogs. Ciência Rural 35, 717719.Google Scholar
Da Silva, A. S., Doyle, R. L. and Monteiro, S. G. (2006). Métodos de contenção e confecção de esfregaço sanguíneo para pesquisa de hemoparasitas em ratos e camundongos. Faculdade de Medicina Veterinária, Zootecnia e Agronomia 13, 8387.Google Scholar
Da Silva, A. S., Wolkmer, P., Gressler, L. T., Otto, M. A., Bess, F., Tavares, K. S., Zanette, R. A. and Monteiro, S. G. (2009). Trypanosoma evansipathogenicitystrain in ratsinoculatedwith parasite in fresh and cryopreserved blood. Ciência Rural 39, 18421846.Google Scholar
Da Silva, A. S., Pierezan, F., Wolkmer, P., Costa, M. M., Oliveira, C. B., Tonin, A. A., Santurio, J. M., Lopes, S. T. A. and Monteiro, S. G. (2010). Pathological findings associated with experimental infection by Trypanosoma evansi in cats. Journal of Comparative Pathology 142, 170176.Google Scholar
Dhiman, M., Zago, M. P., Nunez, S., Amoroso, A., Rementeria, H., Dousset, P., Nunez Burgos, F. and Garg, N. J. (2012). Cardiac-oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in Chagas disease pathogenesis. PLoS ONE 7, 113.Google Scholar
Dolci, A. and Panteghini, M. (2006). The exciting story of cardiac biomarkers: from retrospective detection to gold standard for acute myocardial infarction and more. Clinica Chimica Acta 369, 179187.Google Scholar
Dzeja, P. and Terzic, A. (2009). Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. International Journal of Molecular Science 10, 17291772.Google Scholar
Dzeja, P. P., Vitkevicius, K. T., Redfield, M. M., Burnettm, J. C. and Terzic, A. (1999). Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circulation Research 84, 11371143.Google Scholar
Finol, H. J., Roschman-González, A. (2014). Ultrastructural Study on Tissue Alterations Caused by Trypanosomatids in Experimental Murine Infections. Frontier public health 2, 16.Google Scholar
Fischer, J. C., Ruitenbeek, W., Berden, J. A., Trijbels, J. M., Veerkamp, J. H., Stadhouders, A. M., Sengersa, R. C. A., and Janssena, A. J. M. (1985). Differential investigation of the capacity of succinate oxidation in human skeletal muscle.. Clinica Chimica Acta 153, 2326.Google Scholar
Gao, L., Laude, K. and Cai, H. (2008). Mitochondrial pathophysiology, Reactive oxygen species, and cardiovascular diseases. Veterinary Clinical North America Small Animal Practice 38, 137155.Google Scholar
Garg, N., Popov, V. L. and Papaconstantinou, J. (2003). Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochimica Biophysica Acta 1638, 106120.Google Scholar
Halliwell, B., and Gutteridge, J. M. C. (2007). Free Radicals in Biology and Medicine. 4th edn, Clarendon Press, Oxford.Google Scholar
Herrera, H. M., Davila, A. M. R., Norek, A., Abreu, U. G., Souza, S. S., Da Andrea, P. S. and Jansen, A. M. (2004). Enzootiology of Trypanosoma evansi in Pantanal, Brazil. Veterinary Parasitology 25, 263275.CrossRefGoogle Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals a Zoological Monograph. Blackwell, Oxford, UK, 546 p.Google Scholar
Hughes, B. P. (1962). A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clinica Chimica Acta 7, 597603.CrossRefGoogle ScholarPubMed
Ingwall, J. S. (2004). Transgenic and cardiac energetics: new insights into cardiac metabolism. Journal of Molecular and Cellular Cardiology 37, 613623.Google Scholar
Jacobson, J. and Duchen, M. R. (2004). Interplay between mitochondria and cellular calcium signalling. Molecular and Cellular Biochemistry 256–257, 209218.Google Scholar
Jaffe, A. S., Babuin, L. and Apple, F. S. (2006). Biomarkers in acute cardiac disease: the present and the future. Journal of the American College of Cardiology 48, 111.Google Scholar
Joshi, P. P., Shegokar, V. R., Powar, R. M., Herder, S., Katti, R., Salkar, H. R., Dani, V. S., Bhargava, A., Jannin, J. and Truc, P. (2005). Human Trypanosomosis caused by Trypanosoma evansi in India: the first case report. American Journal of Tropical Medicine and Hygiene 73, 491495.Google Scholar
Kaplan, A., Szabo, L. L. and Opheim, K. E. (1998). Clinical Chemistry: Interpretation and Techniques. Lea e Febiger, Philadelphia.Google Scholar
Leong, S. F., Lai, J. F. K., Lim, L. and Clark, J. B. (1981). Energy-metabolising enzymes in brain regions of adult and aging rats. Journal of Neurochemistry 37, 15481556.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265267.Google Scholar
Lucas, D. T. and Szweda, L. I. (1999). Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America 96, 66896693.Google Scholar
Meyer, D. E., Basha, H. I. and Koenig, M. K. (2013). Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Texas Heart Institute Journal 40, 385394.Google Scholar
Neubauer, S. (2007). The failing heart - an engine out of fuel. New England Journal of Medicine 356, 11401151.Google Scholar
Nickel, A., Loffler, J. and Maack, C. (2013). Myocardial energetic in heart failure. Basic Research in Cardiology 108, 358378.Google Scholar
Park, H. S. and Hourani, S. M. (1999). Differential effects of adenine nucleotide analogueson shape change and aggregation induced by adnosine 5-diphosphate (ADP) inhuman platelets. British Journal of Pharmacology 127, 13591366.Google Scholar
Ranjithkumar, M., Kamili, N. M., Saxena, A., Dan, A., Dey, S., and Raut, S. S. (2011). Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi . Veterinary Parasitology 180, 349353.Google Scholar
Rodrigues, A., Fighera, R. A., Souza, T. M., Schild, A. L., Soares, M. P., Milano, J. and Barros, C. S. L. (2005). Outbreaks of trypanosomiasis in horses by Trypanosoma evansi in the state of Rio Grande do Sul, Brazil: epidemiological, clinical, hematological and pathological aspects. Pesquisa Veterinária Brasileira 25, 239249.CrossRefGoogle Scholar
Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Rotig, A., Saudubray, J. M., and Munnick, A. (1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clinica Chimica Acta 228, 3551.Google Scholar
Sadek, H. A., Humphries, K. M., Szweda, P. A. and Szweda, L. I. (2002). Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion. Archives of Biochemistry and Biophysics 406, 222228.CrossRefGoogle ScholarPubMed
Saks, V., Dzeja, P., Schlattner, U., Vendelin, M., Terzic, A. and Wallimann, T. (2006). Cardiac system bioenergetics: metabolic basis of the Frank–Starling law. Journal of Physiology 571, 253273.CrossRefGoogle ScholarPubMed
Saks, V. A., Tiivel, T., Kay, L., Novel-Chate, V., Daneshrad, Z., Rossi, A., Fontaine, E., Keriel, C., Leverve, X., Ventura-Clapier, R., Anflous, K., Samuel, J. L. and Rappaport, L. (1996). On the regulation of cellular energetics in health and disease. Molecular and Cellular Biochemistry 160–161, 195208.Google Scholar
Saks, V. A., Dossantos, P., Gellerich, F. N. and Diolez, P. (1998). Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channeling in muscle cells. Molecular and Cellular Biochemistry 184, 291307.Google Scholar
Schapira, A. H. (2012). Mitochondrial diseases. Lancet 379, 18251834.Google Scholar
Scorrano, L. (2013). Keeping mitochondria in shape: a matter of life and death. European Journal of Clinical Investigation 43, 886893.Google Scholar
Silva, R. A. M. S., Seidl, A., Ramirez, L. and Dávila, A. M. R. (2002). Trypanosoma evansi e Trypanosoma vivax: Biologia, Diagnóstico e Controle. Embrapa Pantanal, Corumbá, p. 162.Google Scholar
Teixeira, P. C., Iwai, L. K., Kumaroto, A. C. K., Honorato, R., Fiorelli, A., Stolf, N., Kalil, J. and Cunha-Neto, E. (2006). Proteomic inventory of myocardial proteins from patients with chronic Chaga's cardiomyopathy. Brazilian Journal of Medical and Biological Research 39, 15491562.Google Scholar
Tejero, F., Arias-Mota, L. L., Roschman-González, A., Aso, P. M. and Finol, H. J. (2010). Trypanosoma evansi: ultrastructural cardiac muscle and cardiac microvasculature changes in experimental murine infections. Acta Scientiae Veterinariae 38, 279285.Google Scholar
Ventura-Clapier, R., Garnier, A., Veksler, V. and Joubert, F. (2010). Bioenergetics of the failing heart. Biochimica et Biophysica Acta 1813, 13601372.Google Scholar
Vyatkina, G., Bhatia, V., Gerstner, A., Papaconstantinou, J. and Garg, N. (2004). Impaired mitochondrial respiratory chain and bioenergetics during cardiomyopathy development. Biochimica et Biophysica Acta 1689, 162173.Google Scholar
Wallace, D. C. (1999). Mitochondrial diseases in man and mouse. Science 283, 14821487.Google Scholar
Wolkmer, P., Da Silva, A. S., Traesel, C. K., Paim, F. C., Cargnelutti, J. F., Pagnoncelli, M., Picada, M. E., Monteiro, S. G. and Lopes, S. T. (2009). Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi . Veterinary Parasitology 28, 4146.Google Scholar
Zheng, X. X., Shoffner, J. M., Voljavec, A. S. and Wallace, D. C. (1990). Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myophaty muscle biopsies. Biochimica Biophysica Acta 1019, 110.CrossRefGoogle Scholar