Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T14:16:45.938Z Has data issue: false hasContentIssue false

Clotrimazole, ketoconazole, and clodinafop-propargyl inhibit the in vitro growth of Babesia bigemina and Babesia bovis (Phylum Apicomplexa)

Published online by Cambridge University Press:  17 October 2003

S. BORK
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
N. YOKOYAMA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
T. MATSUO
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
F. G. CLAVERIA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan Biology Department, College of Science, De La Salle University-Manila, Taft Avenue, Manila, Philippines
K. FUJISAKI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
I. IGARASHI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan

Abstract

We evaluated the growth inhibitory efficacy of the imidazole derivatives, clotrimazole (CLT) and ketoconazole (KC), and the herbicide clodinafop-propargyl (CP), in in vitro cultures of Babesia bovis and B. bigemina. Clotrimazole was effective in a dose range of 15 to 60 μM (IC50: 11 and 23·5 μM), followed by KC (50 to 100 μM; IC50: 50 and 32 μM) and CP (500 μM; IC50: 265 and 390 μM). In transmission electron microscopy, extensive damage was observed in the cytoplasm of drug-treated parasites. Combinations of CLT/KC, CLT/CP and CLT/KC/CP acted synergistically in both parasites. In contrast, the combination of KC/CP was exclusively effective in B. bovis, but not in B. bigemina.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ARAUJO, M. S. S., MARTINS-FILHO, O. A., PEREIRA, M. E. S. & BRENER, Z. (2000). A combination of benznidazole and ketoconazole enhances efficacy of chemotherapy of experimental Chagas' disease. Journal of Antimicrobial Chemotherapy 45, 819824.CrossRefGoogle Scholar
BORK, S., YOKOYAMA, N., MATSUO, T., CLAVERIA, F. G., FUJISAKI, K. & IGARASHI, I. (2003 a). Growth inhibitory effect of triclosan on equine and bovine Babesia parasites. American Journal of Tropical Medicine and Hygiene, 68 334340.Google Scholar
BORK, S., YOKOYAMA, N., MATSUO, T., CLAVERIA, F. G., FUJISAKI, K. & IGARASHI, I. (2003 b). Clotrimazole, ketoconazole, and clodinafop-porpargyl as potent growth inhibitors of equine Babesia parasites in in vitro culture. Journal of Parasitology (in the Press).Google Scholar
BRUGNARA, C., GEE, B., ARMSBY, C. C., KURTH, S., SAKAMOTO, M., RIFAI, N., ALPER, S. L. & PLATT, O. S. (1996). Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. Journal of Clinical Investigations 97, 12271234.CrossRefGoogle Scholar
DALGLIESH, R. J. & STEWART, N. P. (1977). Tolerance to imidocarb induced experimentally in tick-transmitted Babesia argentina. Australian Veterinary Journal 53, 176180.CrossRefGoogle Scholar
DE VOS, A. J. & BOCK, R. E. (2000). Vaccination against bovine babesiosis. Annals of the New York Academy of Sciences 916, 540545.CrossRefGoogle Scholar
DE VOS, A., POTGIETER, F. T., DE WAAL, D. T. & VAN HERDEN, J. (1994). Bovine babesiosis. In Infectious Diseases of Livestock (ed. Coetzer, J. A. W., Thomson, G. R. & Tustin, R. C.), pp. 278294. Oxford University Press, Oxford.
HINES, S. A., PALMER, G. H., JASMER, D. P., McGUIRE, T. C. & McELWAIN, T. F. (1992). Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Molecular and Biochemical Parasitology 55, 8594.CrossRefGoogle Scholar
HOTZEL, I., SUAREZ, C. E., McELWAIN, T. F. & PALMER, G. H. (1997). Genetic variation in the dimorphic regions of RAP-1 genes and rap-1 loci of Babesia bigemina. Molecular and Biochemical Parasitology 2, 479489.Google Scholar
IGARASHI, I., NIJONGE, F. K., KANEKO, Y. & NAKAMURA, Y. (1998). Babesia bigemina: in vitro and in vivo effects of curdlan sulfate on growth of parasites. Experimental Parasitology 90, 290293.CrossRefGoogle Scholar
ITO, C., TECCHIO, C., COUSTAN-SMITH, E., SUZUKI, T., BEHM, F. G., RAIMONDI, S. C., PUI, C. H. & CAMPANA, D. (2002). The antifungal antibiotic clotrimazole alters calcium homeostasis of leucemic lymphoblasts and induces apoptosis. Leukemia 16, 13441352.CrossRefGoogle Scholar
JONSSON, N. N., MATSCHOSS, A. L., PEPPER, P., GREEN, P. E., ALBRECHT, M. S., HUNGERFORD, J. & ANSELL, J. (2000). Evaluation of TickGARD(PLUS), a novel vaccine against Boophilus microplus, in lactating Holstein-Friesian cows. Veterinary Parasitology 88, 275285.CrossRefGoogle Scholar
KUTTLER, K. L. (1988). Chemotherapy of Babesiosis. In Babesiosis of Domestic Animals and Man (ed. Ristic, M.), pp. 227243. CRC Press, Boca Raton, Florida.
KUTTLER, K. L. & JOHNSON, L. W. (1986). Chemoprophylactic activity of imidocarb, diminazene and oxytetracycline against Babesia bovis and B. bigemina. Veterinary Parasitology 21, 107118.CrossRefGoogle Scholar
LAZARDI, K., URBINA, J. A. & DE SOUZA, W. (1990). Ultrastructural alterations induced by two ergosterol biosynthesis inhibitors, ketoconazole and terbinafine, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrobial Agents and Chemotherapy 34, 20972105.CrossRefGoogle Scholar
PFALLER, M. A. & KROGSTAD, D. J. (1983). Oxygen enhances the antimalarial activity of the imidazoles. American Journal of Tropical Medicine and Hygiene 32, 660665.CrossRefGoogle Scholar
RAETHER, W. & SEIDENATH, H. (1984). Ketoconazole and other potent antimycotic azoles exhibit pronounced activity against Trypanosoma cruzi, Plasmodium berghei and Entamoeba histolytica in vivo. Zeitschrift für Parasitenkunde 70, 135138.CrossRefGoogle Scholar
RISTIC, M. (1988). Babesiosis. In Babesiosis of Domestic Animals and Man (ed. Ristic, M.), pp. 443468. CRC Press, Boca Raton, Florida.
ROBINSON, D. G., EHLERS, U., HERKEN, R., HERRMANN, B., MAYER, F. & SCHUERMANN, F. W. (1985). Methoden für die TEM. In Praeperationsmethodik in der Elektronenmikroskopie, p. 45. Springer-Verlag, Berlin (in German).CrossRef
RODRIGUEZ, R. I. & TREES, A. J. (1996). In vitro responsiveness of Babesia bovis to imidocarb dipropionate and the selection of a drug-adapted line. Veterinary Parasitology 62, 3541.CrossRefGoogle Scholar
TIFFERT, T., GINSBURG, H., KRUGLIAK, M., ELFORD, B. C. & LEW, V. L. (2000). Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum. Proceedings of the National Academy of Sciences USA 97, 331336.CrossRefGoogle Scholar
VANNIER-SANTOS, M. A., URBINA, J. A., MARTINY, A., NEVES, A. & DE SOUZA, W. (1995). Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. Journal of Eukaryotic Microbiology 4, 337346.CrossRefGoogle Scholar
YERUHAM, I., PIPANO, E. & DAVIDSON, M. (1985). A field strain of Babesia bovis apparently resistant to amicarbalide isethonate. Tropical Animal Health and Production 17, 2930.CrossRefGoogle Scholar
ZUTHER, L., JOHNSON, J. J., HASELKORN, R., McLEOD, R. & GORNICKI, P. (1999). Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionat, herbicides targeting acetyl-CoA carboxylase. Microbiology 9, 1338713392.Google Scholar