Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T02:25:01.767Z Has data issue: false hasContentIssue false

Calcium-ions are involved in erythrocyte invasion by equine Babesia parasites

Published online by Cambridge University Press:  02 June 2006

K. OKUBO
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
P. WILAWAN
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
S. BORK
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
M. OKAMURA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan Present address. Laboratory of Zoonoses, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan.
N. YOKOYAMA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
I. IGARASHI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan

Abstract

Ethylene glycol bis (β-aminoethylether)-N,N,N,N-tetraacetic acid (EGTA) is a chelating agent capable of binding to positively-charged metal ions, including a calcium-ion (Ca2+). Here, we demonstrated the inhibitory effect of the chemical on the in vitro asexual growth of the equine protozoan parasites, Babesia caballi and Babesia equi. The growth of both B. caballi and B. equi was significantly inhibited in the presence of EGTA (IC50=1·27 and 2·25 mM, respectively). Under microscopical observation, increased percentages of extracellular merozoites in the total parasites were detected in both of the cultures treated with high concentrations of EGTA. In contrast, further addition of Ca2+ to the EGTA-treated cultures prevented the parasites from clearing and the percentages of extracellular merozoites from increasing. As for B. caballi, an invasion test using high-voltage pulsing proved that EGTA has an inhibitory effect to their erythrocyte invasion. These results suggest that Ca2+ is involved in erythrocyte invasion by equine Babesia parasites.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avarzed, A., Igarashi, I., Kanemaru, T., Hirumi, K., Omata, Y., Saito, A., Oyamada, T., Nagasawa, H., Toyoda, Y. and Suzuki, N. ( 1997). Improved in vitro cultivation of Babesia caballi. Journal of Veterinary Medical Science 59, 479481.CrossRefGoogle Scholar
Bers, D. M. ( 1982). A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. American Journal of Physiology 242, 404408.CrossRefGoogle Scholar
Bork, S., Yokoyama, N., Matsuo, T., Claveria, F. G., Fujisaki, K. and Igarashi, I. ( 2003 a). Growth inhibitory effect of triclosan on equine and bovine Babesia parasites. American Journal of Tropical Medicine and Hygiene 68, 334340.Google Scholar
Bork, S., Yokoyama, N., Matsuo, T., Claveria, F. G., Fujisaki, K. and Igarashi, I. ( 2003 b). Clotrimazole, ketoconazole, and clodinafop-propargyl as potent growth inhibitors of equine Babesia parasites during in vitro culture. Journal of Parasitology 89, 604606.Google Scholar
Caroppo, R., Gerbino, A., Fistetto, G., Colella, M., Debellis, L., Hofer, A. M. and Curci, S. ( 2004). Extracellular calcium acts as a “third messenger” to regulate enzyme and alkaline secretion. Journal of Cell Biology 166, 111119.CrossRefGoogle Scholar
Franssen, F. F., Gaffar, F. R., Yatsuda, A. P. and De Vries, E. ( 2003). Characterisation of erythrocyte invasion by Babesia bovis merozoites efficiently released from their host cell after high-voltage pulsing. Microbes and Infection 5, 365372.CrossRefGoogle Scholar
Garcia, C. R., Markus, R. P. and Madeira, L. ( 2001). Tertian and quartan fevers: temporal regulation in malarial infection. Journal of Biological Rhythms 16, 436443.CrossRefGoogle Scholar
Gazarini, M. L., Thomas, A. P., Pozzan, T. and Garcia, C. R. ( 2003). Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. Journal of Cell Biology 161, 103110.CrossRefGoogle Scholar
Hotta, C. T., Gazarini, M. L., Beraldo, F. H., Varotti, F. P., Lopes, C., Markus, R. P., Pozzan, T. and Garcia, C. R. ( 2000). Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nature Cell Biology 2, 466468.CrossRefGoogle Scholar
Ikadai, H., Martin, M. D., Nagasawa, H., Fujisaki, K., Suzuki, N., Mikami, T., Kudo, N., Oyamada, T. and Igarashi, I. ( 2001). Analysis of a growth-promoting factor for Babesia caballi cultivation. Journal of Parasitology 87, 14841486.CrossRefGoogle Scholar
Johnson, J. G., Epstein, N., Shiroishi, T. and Miller, L. H. ( 1980). Factors affecting the ability of isolated Plasmodium knowlesi merozoites to attach to and invade erythrocytes. Parasitology 80, 539550.CrossRefGoogle Scholar
Kuttler, K. L. ( 1988). World-wide impact of babesiosis. In Babesiosis of Domestic Animals and Men ( ed. Ristic, M.), pp. 122. CRC Press, Boca Raton, Florida.
Mehlhorn, H. and Schein, E. ( 1998). Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitology Research 84, 467475.CrossRefGoogle Scholar
Moreno, S. N. and Docampo, R. ( 2003). Calcium regulation in protozoan parasites. Current Opinion of Microbiology 6, 359364.CrossRefGoogle Scholar
Nagai, A., Yokoyama, N., Matsuo, T., Bork, S., Hirata, H., Xuan, X., Zhu, Y., Claveria, F. G., Fujisaki, K. and Igarashi, I. ( 2003). Growth-inhibitory effects of artesunate, pyrimethamine, and pamaquine against Babesia equi and Babesia caballi in in vitro cultures. Antimicrobial Agents and Chemotherapy 47, 800803.CrossRefGoogle Scholar
Schein, E. ( 1988). Equine babesiosis. In Babesiosis of Domestic Animals and Men ( ed. Ristic, M.), pp. 197208. CRC Press, Boca Raton, Florida.
Schmid, R. W. and Reilley, N. C. ( 1957). New complex for titration of calcium in the presence of magnesium. Analytical Chemistry 29, 264268.CrossRefGoogle Scholar
Simons, T. J. ( 1991). Intracellular free zinc and zinc buffering in human red blood cells. Journal of Membrane Biology 123, 6371.CrossRefGoogle Scholar
Tatsumi, T. and Fliss, H. ( 1994). Hypochlorous acid mobilizes intracellular zinc in isolated rat heart myocytes. Journal of Molecular and Cellular Cardiology 26, 471479.CrossRefGoogle Scholar
Wetzel, D. M., Chen, L. A., Ruiz, F. A., Moreno, S. N. and Sibley, L. D. ( 2004). Calcium-mediated protein secretion potentiates motility in Toxoplasma gondii. Journal of Cell Science 117, 57395748.CrossRefGoogle Scholar
Yokoyama, N., Suthisak, B., Hirata, H., Matsuo, T., Inoue, N., Sugimoto, C. and Igarashi, I. ( 2002). Cellular localization of Babesia bovis merozoite rhoptry-associated protein 1 and its erythrocyte-binding activity. Infection and Immunity 70, 58225826.CrossRefGoogle Scholar