Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T03:50:17.468Z Has data issue: false hasContentIssue false

Assessment of benzimidazole binding to individual recombinant tubulin isotypes from Haemonchus contortus

Published online by Cambridge University Press:  12 July 2001

M. E. OXBERRY
Affiliation:
Molecular Immunology Laboratory, School of Biomedical Sciences, Curtin University, Perth, Western Australia 6845
T. G. GEARY
Affiliation:
Animal Health Discovery Research, Pharmacia and Upjohn, Kalamazoo, Michigan, USA 49007
R. K. PRICHARD
Affiliation:
Institute of Parasitology, Macdonald Campus, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9

Abstract

One α- and 2 β-tubulin isotypes (isotypes 1 and 2) from the parasitic nematode Haemonchus contortus were artificially expressed in E. coli and purified to obtain tubulin that was capable of polymerizing into microtubules. Binding of [14C] mebendazole (MBZ), a benzimidazole compound, to each individual unpolymerized isotype and to microtubules polymerized from recombinant α- and β-tubulin was assessed and Kd and Bmax values determined. Mebendazole bound to the individual tubulin isotypes with a stoichiometry of 1:1. Binding occurred with highest affinity to α-tubulin followed by β-tubulin isotype 2 and β-tubulin isotype 1 indicating that α-tubulin may play a role in benzimidazole binding to microtubules. Upon polymerization of α- and β-tubulin isotype 2 into microtubules the stoichiometry of binding increased to 2:1 (mebendazole:tubulin) while binding affinity remained the same. Mebendazole binding to α/β-isotype 1 microtubules remained unchanged following polymerization. The increase in the number of benzimidazole receptors on α/β-isotype 2 microtubules suggests the formation of a new benzimidazole receptor upon polymerization.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BANERJEE, A. & LUDUENA, R. F. (1992). Kinetics of colchicine binding to purified β-tubulin isotypes from bovine brain. Journal of Biological Chemistry 267, 1333513339.Google Scholar
BARROWMAN, M. M., MARRINER, S. E. & BOGAN, J. A. (1984). The binding and subsequent inhibition of tubulin polymerisation in Ascaris suum (in vitro) by benzimidazole anthelmintics. Biochemical Pharmacology 33, 30373040.CrossRefGoogle Scholar
BEECH, R. N., PRICHARD, R. K. & SCOTT, M. E. (1994). Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Genetics 138, 103110.Google Scholar
CORREIA, J. J., BATY, L. T. & WILLIAMS, R. C. JR. (1987). Mg2+ dependence of guanine nucleotide binding to tubulin. Journal of Biological Chemistry 262, 1727817284.Google Scholar
FLOYD, L. J., BARNES, L. D. & WILLIAMS, R. F. (1989). Photoaffinity labelling of tubulin with (2-nitro-4-azidophenyl) deacetylcolchicine: direct evidence for two colchicine binding sites. Biochemistry 28, 85158525.CrossRefGoogle Scholar
GEARY, T. G., NULF, S. C., FAVREAU, M. Z., TANG, L., PRICHARD, R. K., HETZENBUHLER, N. T., SHEA, M. H., ALEXANDER, S. J. & KLEIN, R. D. (1992). Three β-tubulin cDNAs from the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology 50, 295306.CrossRefGoogle Scholar
GILL, J. H. & LACEY, E. (1992). The kinetics of mebendazole binding to Haemonchus contortus tubulin. International Journal for Parasitology 22, 939946.CrossRefGoogle Scholar
JUNG, M. K. & OAKLEY, B. R. (1990). Identification of an amino acid substitution in the ben A, β-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motility and the Cytoskeleton 17, 8794.CrossRefGoogle Scholar
KATIYAR, S. K., GORDON, V. R., MCLAUGHLIN, G. L. & EDLIND, T. D. (1994). Antiprotozoal activities of benzimidazoles and correlations with β-tubulin sequence. Antimicrobial Agents and Chemotherapy 38, 20862090.CrossRefGoogle Scholar
KWA, M. S. G., KOOYMAN, F. N. J., BOERSEMA, J. H. & ROOS, M. H. (1993). Effect of selection for benzimidazole resistance in Haemonchus contortus on β-tubulin isotype 1 and isotype 2 genes. Biochemical and Biophysical Research Communications 191, 413419.CrossRefGoogle Scholar
LACEY, E. (1988). The role of the cytoskeletal protein, tubulin, in the mode of action and mechanisms of drug resistance to benzimidazoles. International Journal for Parasitology 18, 885936.CrossRefGoogle Scholar
LOPES, N. M., MILLER, H. P., YOUNG, N. D. & BHUYAN, B. K. (1997). Assessment of microtubule stabilizers by semiautomated in vitro microtubule protein polymerization and mitotic block assays. Cancer Chemotherapy and Pharmacology 41, 3747.CrossRefGoogle Scholar
LUBEGA, G. W., GEARY, T. G., KLEIN, R. D. & PRICHARD, R. K. (1993). Expression of cloned β-tubulin genes of Haemonchus contortus in Escherichia coli: interaction of recombinant β-tubulin with native tubulin and mebendazole. Molecular and Biochemical Parasitology 62, 281292.CrossRefGoogle Scholar
LUBEGA, G. W., KLEIN, R. D., GEARY, T. G. & PRICHARD, R. K. (1994). Haemonchus contortus: the role of two beta-tubulin gene subfamilies in the resistance to benzimidazole anthelmintics. Biochemical Pharmacology 47, 17051715.CrossRefGoogle Scholar
LUBEGA, G. W. & PRICHARD, R. K. (1991a). Beta-tubulin and benzimidazole resistance in the sheep nematode Haemonchus contortus. Molecular and Biochemical Parasitology 47, 129138.Google Scholar
LUBEGA, G. W. & PRICHARD, R. K. (1991b). Specific interaction of benzimidazole anthelmintics with tubulin: high affinity binding and benzimidazole resistance in Haemonchus contortus. Molecular and Biochemical Parasitology 38, 221232.Google Scholar
MCCRACKEN, R. O. & LIPKOWITZ, K. B. (1990). Structure-activity relationships of benzothiazole and benzimidazole anthelmintics: a molecular modelling approach to in vivo drug efficacy. Journal of Parasitology 76, 853864.CrossRefGoogle Scholar
OXBERRY, M. E., GEARY, T. G., WINTERROWD, C. A. & PRICHARD, R. K. (2001). Individual expression of recombinant α- and β-tubulin from Haemonchus contortus: polymerisation and drug effects. Protein Expression and Purification (in the Press).CrossRefGoogle Scholar
SACKETT, D. L., BHATTACHARARYYA, B. & WOLFF, J. (1994). Local unfolding and the stepwise loss of the functional properties of tubulin. Biochemistry 33, 1286812878.CrossRefGoogle Scholar
SACKETT, D. N. & VARMA, J. K. (1993). Molecular mechanism of colchicine action: induced local unfolding of β-tubulin. Biochemistry 32, 1356013565.CrossRefGoogle Scholar
SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989). Molecular Cloning. A Laboratory Manual. 2nd Edn. Cold Spring Harbour Laboratory Press, New York.
SERRANO, L., DE LA TORRE, J., MACCIONI, R. B. & AVILA, J. (1984). Involvement of the carboxy-terminal domain in the regulation of its assembly. Proceedings of the National Academy of Sciences, USA 81, 59895993.CrossRefGoogle Scholar
UPPULURI, S., KNIPLING, L., SACKETT, D. L. & WOLFF, J. (1993). Localization of the colchicine binding site of tubulin. Proceedings of the National Academy of Sciences, USA 90, 1159811602.CrossRefGoogle Scholar
WILLIAMS, R. C. JR. & LEE, J. C. (1982). Preparation of tubulin from brain. Methods in Enzymology 85, 376385.CrossRefGoogle Scholar
WOLFF, J., KNIPLING, L., CAHNMANN, H. J. & PALUMBO, G. (1991). Direct photoaffinity labelling of tubulin with colchicine. Proceedings of the National Academy of Sciences, USA 88, 28202824.CrossRefGoogle Scholar