Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-11T00:21:23.351Z Has data issue: false hasContentIssue false

Subcellular localization of Pfs16, a Plasmodium falciparum gametocyte antigen

Published online by Cambridge University Press:  06 April 2009

D. A. Baker
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
O. Daramola
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
M. V. McCrossan
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
J. Harmer
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
G. A. T. Targett
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT

Summary

We have used immunoelectron microscopy to investigate the subcellular location of Pfs16 in Plasmodium falciparum. It was detected in the outer membrane region of gametocytes and more specifically on the parasitophorous vacuole membrane (pvm), since, during gametogenesis when the pvm disintegrates, the majority of the antigen was detected on the remains of this membrane in multilaminated whorls and not on the gamete plasma membrane. The antigen was also present on other gametocyte cellular structures, including those which we believe to be Garnham bodies, present in the host cell cytoplasm of some gametocytes. The antigen was present too on the membrane surrounding cytostomes and the resulting food vacuoles in the parasite cytoplasm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. (1988). Fine structure of malaria parasites in the various stages of development. In Malaria: Principles and Practice of Malariology, vol. 1 (ed. Wernsdorfer, W. H. & McGregor, Sir I.), pp. 97130. London: Churchill Livingstone.Google Scholar
Aikawa, M., Miller, L. H., Johnson, J. & Rabbege, J. (1978). Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. Journal of Cell Biology 77, 7282.CrossRefGoogle ScholarPubMed
Aikawa, M., Carter, R., Ito, Y. & Nijhout, M. M. (1984). New observations on gametogenesis, fertilization, and zygote transformation in Plasmodium gallinaceum. Journal of Protozoology 31, 403–13.CrossRefGoogle ScholarPubMed
Alano, P. (1991). Plasmodium sexual stage antigens. Parasitology Today 7, 199203.CrossRefGoogle ScholarPubMed
Atkinson, C. T., Aikawa, M., Perry, G., Fujino, T., Bennet, V., Davidson, E. A. & Howard, R. J. (1987). Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes. European Journal of Cell Biology 45, 192–9.Google Scholar
Bannister, L. H., Butcher, G. A., Dennis, E. D. & Mitchell, G. H. (1975). Structure and invasive behaviour of Plasmodium knowlesi merozoites in vitro. Parasitology 71, 483–91.CrossRefGoogle ScholarPubMed
Bruce, M. C., Baker, D. A., Alano, P., Rogers, N. C., Graves, P. M., Targett, G. A. T. & Carter, R. (1990 a). Sequence coding for a sexual stage specific protein of Plasmodium falciparum. Nucleic Acids Research 18, 3637.CrossRefGoogle ScholarPubMed
Bruce, M. C., Alano, P., Duthie, S. & Carter, R. (1990 b). Commitment of the malaria parasite P. falciparum to asexual and sexual development. Parasitology 100, 191200.CrossRefGoogle Scholar
Bruce, M. C., Carter, R. N., Nakamura, K., Aikawa, M. & Carter, R. (1993). Cellular location and temporal expression of the Plasmodium falciparum sexual stage antigen, Pfs16. Molecular and Biochemical Parasitology (in the Press).Google Scholar
Dluzewski, A. R., Mitchell, G. H., Fryer, P. R., Griffiths, S., Wilson, K. J. M. & Gratzer, W. B. (1992). Origins of the parasitophorous vacuole membrane of the parasite. Plasmodium falciparum, in human red blood cells. Journal of Cell Science 102, 527–32.CrossRefGoogle ScholarPubMed
Feng, Z., Hoffmann, R. N., Nussenzweig, R. S., Tsuji, M., Fujioka, H., Aikawa, M., Lensen, T. H. W., Ponnudurai, T. & Pologe, L. G. (1993). Pfs2400 Can mediate antibody-dependent malaria transmission inhibition and may be the Plasmodium falciparum 11.1 gene product. Journal of Experimental Medicine 177, 273–81.CrossRefGoogle ScholarPubMed
Field, J. W. & Shute, P. G. (1956). The microscopic diagnosis of human malaria. II. A morphological study of the erythrocytic parasites. Studies from the Institute for Medical Research, Malaya. No. 24, Part II.Google Scholar
Galfré, G. & Milstein, C. (1981). Preparation of monoclonal antibodies: strategies and procedures. Methods in Enzymology 73, 346.CrossRefGoogle ScholarPubMed
Garnham, P. C. C. (1931). Observations on Plasmodium falciparum with special reference to the production of crescents. Kenya and East African Medical Journal 8, 221.Google Scholar
Garnham, P. C. C. (1966). Malaria Parasites and Other Haemosporidia. Oxford: Blackwell Scientific Publications.Google Scholar
Graves, P. M., Doubrovsky, A. & Beckers, P. (1991). Antibody responses to Plasmodium falciparum gametocyte antigens during and after malaria attacks in schoolchildren from Madang, Papua New Guinea. Parasite Immunology 13, 291–9.CrossRefGoogle ScholarPubMed
Harlow, E. & Lane, D. (1988). Antibodies: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Publications.Google Scholar
Harte, P. G., Rogers, N. C. & Targett, G. A. T. (1985). The role of T cells in preventing transmission of rodent malaria. Immunology 56, 17.Google ScholarPubMed
Kaslow, D.C., Quakyi, I. A., Syin, C., Raum, M. G., Keister, D. B., Coligan, J. E., McCutchan, T. F. & Miller, L. H. (1988). A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature, London 333, 74–6.CrossRefGoogle ScholarPubMed
Kemp, D. J., Cowman, A. F. & Walliker, D. (1990). Genetic diversity in Plasmodium falciparum. Advances in Parasitology 29, 75149.CrossRefGoogle ScholarPubMed
Mattei, D., Hinterberg, K. & Scherf, A. (1992). Pf11–1 and Pf332: two giant proteins synthesized in erythrocytes infected with Plasmodium falciparum. Parasitology Today 8, 426–8.CrossRefGoogle Scholar
Mazier, D., Mellouk, S., Beaudoin, R. L., Texier, B., Druilhe, P., Hockmeyer, W., Trosper, J., Paul, C., Charoenvit, Y., Young, J., Miltgen, F., Chedid, L., Chicot, J. P., Galley, B., Brandicourt, O. & Gentilini, M. (1986). Effect of antibodies to recombinant and synthetic peptides on P. falciparum sporozoites in vitro. Science 231, 156–9.CrossRefGoogle Scholar
Meuwissens, J. H. E. T. (1989). Current studies related to the development of transmission-blocking malaria vaccines: a review. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, (Suppl.) 5760.CrossRefGoogle Scholar
Moelans, I. M. D., Kocken, C. H. M., Meis, J., Konings, R. N. H. & Schoenmakers, J. G. G. (1991 a). A novel protein antigen of the malaria parasite Plasmodium falciparum located on the surface of gametes and sporozoites. Molecular and Biochemical Parasitology 45, 193204.CrossRefGoogle ScholarPubMed
Moelans, I. M. D., Klaassen, C. H. W., Kaslow, D. C., Konings, R. N. H. & Schoenmakers, J. G. G. (1991 b). Minimal variation in Pfs16, a novel protein located in the membrane of gametes and sporozoites of Plasmodium falciparum. Molecular and Biochemical Parasitology 46, 311–14.CrossRefGoogle ScholarPubMed
Scherf, A., Carter, R., Petersen, C., Alano, P., Nelson, R., Aikawa, M., Mattei, D., Da Silva, L. P. & Leech, J. (1992). Gene inactivation of Pf11–1 of Plasmodium falciparum by chromosome breakage and healing: identification of a gametocyte-specific protein with a potential role in gametogenesis. The EMBO Journal 11, 2293–301.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1982). Gametogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology 84, 111.CrossRefGoogle Scholar
Sinden, R. E. & Smalley, M. E. (1976). Gametocytes of Plasmodium falciparum: phagocytosis by leucocytes in vivo and in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 344–5.CrossRefGoogle ScholarPubMed
Sinden, R. E., Canning, E. U., Bray, R. S. & Smalley, M. E. (1978). Gametocyte and gamete development in Plasmodium falciparum. Proceedings of the Royal Society of London, B 201, 375–99.Google ScholarPubMed
Sherman, I. & Hull, R. W. (1960). The pigment (hemozoin) and proteins of the avian malaria parasite Plasmodium lophurae. Journal of Protozoology 7, 409–16.CrossRefGoogle Scholar
Shine, J. & Dalgarno, L. (1974). The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosomal binding sites. Proceedings of the National Academy of Sciences USA 87, 1342–6.CrossRefGoogle Scholar
Thomson, J. G. & Robertson, A. (1935). Plasmodium falciparum gametocytes in the internal organs and peripheral circulation. Transactions of the Royal Society of Tropical Medicine and Hygiene 29, 3140.CrossRefGoogle Scholar
Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchen, T. F., Szarfman, A., London, W. T., Cocoran, L. M., Burkot, T. R. & Carter, R. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–6.CrossRefGoogle ScholarPubMed