Hostname: page-component-797576ffbb-xg4rj Total loading time: 0 Render date: 2023-12-05T10:15:05.142Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Speciation of echinostomes: evidence for the existence of two sympatric sibling species in the complex Echinoparyphium recurvatum (von Linstow 1873) (Digenea: Echinostomatidae)

Published online by Cambridge University Press:  06 April 2009

A. M. McCarthy
Division of Biosphere Sciences, King's College London, University of London, Kensington, London W8 7AH


Evidence for the existence of 2 first intermediate host-specific sibling species of the 45 collar-spined echinostome Echinoparyphium recurvatum is presented. Experimental studies on their life-cycles were carried out under controlled laboratory conditions. The two entities were found to be morphologically indistinguishable in all major respects, yet they exhibited distinct biological characteristics. One of the sibling species utilizes the freshwater lymnaeid pulmonate snail Lymnaea peregra as first intermediate host, and the adults occur in the anterior small intestine of the wildfowl experimental definitive host Anas platyrhynchos. The other utilizes the freshwater mesogastropod prosobranch snail Valvata piscinalis as first intermediate host, and the adults occur in the posterior small intestine and rectum of A. platyrhynchos. The existence of the two sibling species in sympatry may be explained by the fact that the life-cycles of the two forms represent two distinct cycles of transmission serving to reduce excessive competition between them.

Research Article
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Bartoli, P. (1972). Les cycles biologiques de Gymnophallus nereicola et G. fossarum, especes jumelles parasites d'oiseaux de rivages marins (Trematoda: Digenea: Gymnophallidae). Annales de Parasitologie Humaine et Comparée 47, 193223.Google Scholar
Bartoli, P. (1983). Populations ou espèces? Recherches sur la signification de la transmission de Trématodes Lepocreadiinae (T. Odhner, 1905) dans deux ecosystems marins. Annales de Parasitologie Humaine et Comparée 58, 117–39.Google Scholar
Beaver, P. C. (1937). Experimental studies on Echinostoma revolutum (Froelich) a fluke from birds and mammals. Illinois Biological Monographs 15, 196.Google Scholar
Blair, D. (1989). Restriction enzyme mapping of ribosomal DNA can distinguish between liver fluke species. Molecular and Biochemical Parasitology 36, 201–8.Google Scholar
Bray, R. A. & Rollinson, D. (1985). Enzyme electrophoresis as an aid to distinguishing species of Fellodistomum, Steringotrema and Steringophorus (Digenea: Fellodistomidae). International Journal for Parasitology 15, 255–63.Google Scholar
Christensen, N. Ø., Fried, B. & Kanev, I. (1989). Taxonomy of the 37 collar-spined Echinostoma (Trematoda: Echinostomatidae) in studies on population regulation in experimental rodent hosts. Angewandte Parasitologie (in the Press).Google Scholar
Combes, C. (1982). Trematodes: antagonism between species and sterilizing effects on snails in biological control. Parasitology 84, 151–75.Google Scholar
Diaz-Diaz, M. T. (1976). Studies on the life cycles of digenetic trematodes. Ph.D. thesis, University of Leeds.Google Scholar
Evans, N. A., Whitfield, P. J. & Dobson, A. P. (1981). Parasite utilization of a host community: the distribution and occurrence of metacercarial cysts of Echinoparyphium recurvatum (Digenea: Echinostomatidae) in seven species of mollusc at Harting Pond, Sussex. Parasitology 83, 112.Google Scholar
Fried, B., Irwin, S. W. B. & Lowry, S. (1989). Scanning electron microscopy of Echinostoma revolutum and E. liei adults. Abstracts of The British Society for Parasitology, Spring Meeting, Southampton University, p. 38.Google Scholar
Harper, W. F. (1929). On the structure and life-history of British freshwater larval trematodes. Parasitology 21, 189219.Google Scholar
H.M.S.O. (1969). Fish toxicity tests. Her Majesty's Stationery Office Leaflet Number Dd. 139779 K36 12/69.Google Scholar
Holmes, J. C. (1973). Site selection by parasitic helminths: interspecific interactions, site segregation, and their importance to development of helminth communities. Canadian Journal of Zoology 51, 333–47.Google Scholar
Holmes, J. C. (1983). Evolutionary relationships between parasitic helminths and their hosts. In Coevolution (ed. Futuyma, D. J. & Slatkin, M.), Massachusetts, U.S.A.: Sinauer Publishers.Google Scholar
Jeyarasasingam, U., Heyneman, D., Lim, H. K. & Mansour, N. (1972). Life-cycle of a new echinostome from Egypt, Echinostoma liei sp. n. (Trematoda: Echinostomatidae). Parasitology 65, 203–22.Google Scholar
Kanev, I. (1985). On the morphology, biology, ecology and taxonomy of the E. revolutum group (Trematoda: Echinostomatidae: Echinostoma). D.Sc. Thesis, Bulgarian Academy of Sciences, Sofia, Bulgaria.Google Scholar
Køie, M. (1987). Scanning electron microscopy of rediae, cercariae, metacercariae and adults of Mesorchis denticulatus (Rudolphi, 1802) (Trematoda, Echinostomatidae). Parasitology Research 73, 50–6.Google Scholar
Lie, K. J. & Heyneman, D. (1972). Intramolluscan intertrematode antagonism: a review of factors influencing the host-parasite system and its possible role in biological control. Advances in Parasitology 10, 191268.Google Scholar
Mathias, P. (1926). Sur le cycle evolutif d'un trématode de la famile Echinostomidae Dietz (Echinoparyphium recurvatum Linstow). Comptes rendus de l'Academie des Sciences, Paris 183, 90–2.Google Scholar
McCarthy, A. M. (1989). The biology and transmission dynamics of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Ph.D. thesis, King's College London, University of London.Google Scholar
Renaud, F. & Gabrion, C. (1988). Speciation of Cestoda: evidence for two sibling species in the complex Bothrimonus nylandicus (Schneider 1902) (Cestoda: Cyathocephalidea). Parasitology 97, 139–47.Google Scholar
Rohde, K. (1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist 114, 648–71.Google Scholar
Ross, G. C., Fried, B. & Southgate, V. R. (1989). Echinostoma revolutum and E. liei: Observations on enzymes and pigments. Journal of Natural History 23, 977–81.Google Scholar
Uglem, G. L. & Beck, S. M. (1972). Habitat specificity and correlated aminopeptidase activity in the acanthocephalans Neoechinorhynchus cristatus and N. crassus. Journal of Parasitology 58, 911–20.Google Scholar
Walker, T., Simpson, A. J. G. & Rollinson, D. (1989). Differentiation of Schistosoma mansoni from S. rodhaini using cloned DNA probes. Parasitology 89, 7580.Google Scholar