Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-5628d Total loading time: 0.275 Render date: 2021-05-07T17:05:08.205Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Paving the way for transgenic schistosomes

Published online by Cambridge University Press:  06 September 2011

S. BECKMANN
Affiliation:
Institute for Parasitology, Justus-Liebig-University, 35392 Giessen, Germany
C. G. GREVELDING
Affiliation:
Institute for Parasitology, Justus-Liebig-University, 35392 Giessen, Germany
Corresponding

Summary

In parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes. Besides approaches using particle bombardment, electroporation or virus-based infection strateies to introduce DNA constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity. Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene of interest.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

Aboobaker, A. A. and Blaxter, M. L. (2004). Functional genomics for parasitic nematodes and platyhelminths. Trends in Parasitology 20, 178184. doi: 10.1016/j.pt.2004.01.016.CrossRefGoogle ScholarPubMed
Atkinson, L. E., McVeigh, P., Kimber, M. J., Marks, N. J., Eipper, B. A., Mains, R. E., Day, T. A. and Maule, A. G. (2010). A PAL for Schistosoma mansoni PHM. Molecular and Biochemical Parasitology 173, 97106. doi:10.1016/j.molbiopara.2010.05.009.CrossRefGoogle ScholarPubMed
Ayuk, M. A., Suttiprapa, S., Rinaldi, G., Mann, V. H., Lee, C. M. and Brindley, P. J. (2011). Schistosoma mansoni U6 gene promoter-driven short hairpin RNA induces RNA interference in human fibrosarcoma cells and schistosomules. International Journal for Parasitology 41, 783789. doi: 10.1016/j.ijpara.2011.02.004.CrossRefGoogle ScholarPubMed
Bachmann, A. and Knust, E. (2008). The use of P-element transposons to generate transgenic flies. Methods in Molecular Biology 420, 6177. doi: 10.1007/978-1-59745-583-1_4.CrossRefGoogle ScholarPubMed
Basch, P. F. and Humbert, R. (1981). Cultivation of Schistosoma mansoni in vitro. III. Implantation of cultured worms into mouse mesenteric veins. Journal of Parasitology 67, 191195.CrossRefGoogle ScholarPubMed
Bayne, C. J. and Grevelding, C. G. (2003). Cloning of Schistosoma mansoni sporocysts in vitro and detection of genetic heterogeneity among individuals within clones. Journal of Parasitology 89, 10561060. doi: 10.1645/GE-3186RN.CrossRefGoogle ScholarPubMed
Beckmann, S., Buro, C., Dissous, C., Hirzmann, J. and Grevelding, C. G. (2010). The Syk Kinase SmTK4 of Schistosoma mansoni is involved in the regulation of spermatogenesis and oogenesis. PLoS Pathogens 6, e1000769. doi: 10.1371/journal.ppat.1000769.CrossRefGoogle ScholarPubMed
Beckmann, S., Wippersteg, V., El-Bahay, A., Hirzmann, J., Oliveira, G. and Grevelding, C. G. (2007). Schistosoma mansoni: germ-line transformation approaches and actin-promoter analysis. Experimental Parasitology 117, 292303. doi: 10.1016/j.exppara.2007.04.007.CrossRefGoogle ScholarPubMed
Berezikov, E., Bargmann, C. I. and Plasterk, R. H. (2004). Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Research 32, e40. doi: 10.1093/nar/gnh033.CrossRefGoogle ScholarPubMed
Berriman, M., Haas, B. J., LoVerde, P. T., Wilson, R. A., Dillon, G. P., Cerqueira, G. C., Mashiyama, S. T., Al-Lazikani, B., Andrade, L. F., Ashton, P. D., Aslett, M. A., Bartholomeu, D. C., Blandin, G., Caffrey, C. R., Coghlan, A., Coulson, R., Day, T. A., Delcher, A., DeMarco, R., Djikeng, A., Eyre, T., Gamble, J. A., Ghedin, E., Gu, Y., Hertz-Fowler, C., Hirai, H., Hirai, Y., Houston, R., Ivens, A., Johnston, D. A., Lacerda, D., Macedo, C. D., McVeigh, P., Ning, Z., Oliveira, G., Overington, J. P., Parkhill, J., Pertea, M., Pierce, R. J., Protasio, A. V., Quail, M. A., Rajandream, M. A., Rogers, J., Sajid, M., Salzberg, S. L., Stanke, M., Tivey, A. R., White, O., Williams, D. L., Wortman, J., Wu, W., Zamanian, M., Zerlotini, A., Fraser-Liggett, C. M., Barrell, B. G. and El-Sayed, N. M. (2009). The genome of the blood fluke Schistosoma mansoni. Nature 460, 352358. doi:10.1038/nature08160.CrossRefGoogle ScholarPubMed
Bhardwaj, R., Krautz-Peterson, G. and Skelly, P. J. (2011). Using RNA Interference in Schistosoma mansoni. Methods in Molecular Biology 764, 223239. doi: 10.1007/978-1-61779-188-8_15.CrossRefGoogle ScholarPubMed
Boyle, J. P., Wu, X. J., Shoemaker, C. B. and Yoshino, T. P. (2003). Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Molecular and Biochemical Parasitology 128, 205215. doi: 10.1016/S0166-6851(03)00078-1.CrossRefGoogle ScholarPubMed
Boyle, J. P. and Yoshino, T. P. (2003). Gene manipulation in parasitic helminths. International Journal for Parasitology 33, 12591268. doi: 10.1016/S0020-7519(03)00159-0.CrossRefGoogle ScholarPubMed
Britton, C. and Murray, L. (2006). Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes. International Journal for Parasitology 36, 651659. doi: 10.1016/j.ijpara.2006.02.010.CrossRefGoogle ScholarPubMed
Brooks, D. and Isaac, R. E. (2002). Functional genomics of parasite worms: the dawn of a new era. Parasitology International 51, 319325. doi: 10.1016/S1383-5769(02)00063-6.CrossRefGoogle ScholarPubMed
Caffrey, C. R., Salter, J. P., Lucas, K. D., Khiem, D., Hsieh, I., Lim, K. C., Ruppel, A., McKerrow, J. H. and Sajid, M. (2002). SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Molecular and Biochemical Parasitology 121, 4961. doi: 10.1016/S0166-6851(02)00022-1.CrossRefGoogle ScholarPubMed
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. and Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802805.CrossRefGoogle ScholarPubMed
Cheng, G. and Davis, R. E. (2007). An improved and secreted luciferase reporter for schistosomes. Molecular and Biochemical Parasitology 155, 167171. doi: 10.1016/j.molbiopara.2007.06.013.CrossRefGoogle ScholarPubMed
Cheng, G., Fu, Z., Lin, J., Shi, Y., Zhou, Y., Jin, Y. and Cai, Y. (2009). In vitro and in vivo evaluation of small interference RNA-mediated gynaecophoral canal protein silencing in Schistosoma japonicum. Journal of Gene Medicine 11, 412421. doi: 10.1002/jgm.1314.CrossRefGoogle ScholarPubMed
Cheng, G. F., Lin, J. J., Shi, Y., Jin, Y. X., Fu, Z. Q., Jin, Y. M., Zhou, Y. C. and Cai, Y. M. (2005). Dose-dependent inhibition of gynecophoral canal protein gene expression in vitro in the schistosome (Schistosoma japonicum) by RNA interference. Acta Biochimica et Biophysica Sinica (Shanghai) 37, 386390. doi: 10.1111/j.1745-7270.2005.00058.x.CrossRefGoogle ScholarPubMed
Clayton, C. E. (1999). Genetic manipulation of kinetoplastida. Parasitology Today 15, 372378. doi: 10.1016/S0169-4758(99)01498-2.CrossRefGoogle ScholarPubMed
Clough, E. R. (1981). Morphology and reproductive organs and oogenesis in bisexual and unisexual transplants of mature Schistosoma mansoni females. Journal of Parasitology 67, 535539.CrossRefGoogle ScholarPubMed
Cogswell, A. A., Collins, J. J. III, Newmark, P. A. and Williams, D. L. (2011). Whole mount in situ hybridization methodology for Schistosoma mansoni. Molecular and Biochemical Parasitology 178, 4650. doi: 10.1016/j.molbiopara.2011.03.001.CrossRefGoogle ScholarPubMed
Cohen, L. M. and Eveland, L. K. (1988). Schistosoma mansoni: characterization of clones maintained by the microsurgical transplantation of sporocysts. Journal of Parasitology 74, 963969.CrossRefGoogle ScholarPubMed
Copeland, C. S., Brindley, P. J., Heyers, O., Michael, S. F., Johnston, D. A., Williams, D. L., Ivens, A. C. and Kalinna, B. H. (2003). Boudicca, a retrovirus-like long terminal repeat retrotransposon from the genome of the human blood fluke Schistosoma mansoni. Journal of Virology 77, 61536166. doi: 10.1128/JVI.77.11.6153-6166.2003.CrossRefGoogle ScholarPubMed
Copeland, C. S., Mann, V. H. and Brindley, P. J. (2007). Both sense and antisense strands of the LTR of the Schistosoma mansoni Pao-like retrotransposon Sinbad drive luciferase expression. Molecular Genetics and Genomics 277, 161170. doi: 10.1007/s00438-006-0181-1.CrossRefGoogle ScholarPubMed
Copeland, C. S., Mann, V. H., Morales, M. E., Kalinna, B. H. and Brindley, P. J. (2005). The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evolutionary Biology 5, 20. doi: 10.1186/1471-2148-5-20.CrossRefGoogle ScholarPubMed
Correnti, J. M., Brindley, P. J. and Pearce, E. J. (2005). Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Molecular and Biochemical Parasitology 143, 209215. doi: 10.1016/j.molbiopara.2005.06.007.CrossRefGoogle ScholarPubMed
Correnti, J. M., Jung, E., Freitas, T. C. and Pearce, E. J. (2007). Transfection of Schistosoma mansoni by electroporation and the description of a new promoter sequence for transgene expression. International Journal for Parasitology 37, 11071115. doi: 10.1016/j.ijpara.2007.02.011.CrossRefGoogle ScholarPubMed
Correnti, J. M. and Pearce, E. J. (2004). Transgene expression in Schistosoma mansoni: introduction of RNA into schistosomula by electroporation. Molecular and Biochemical Parasitology 137, 7579. doi: 10.1016/j.molbiopara.2004.04.015.CrossRefGoogle ScholarPubMed
Davis, R. E., Parra, A., LoVerde, P. T., Ribeiro, E., Glorioso, G. and Hodgson, S. (1999). Transient expression of DNA and RNA in parasitic helminths by using particle bombardment. Proceedings of the National Academy of Sciences, USA 96, 86878692.CrossRefGoogle ScholarPubMed
de Koning-Ward, T. F., Janse, C. J. and Waters, A. P. (2000). The development of genetic tools for dissecting the biology of malaria parasites. Annual Review of Microbiology 54, 157185. doi: 10.1146/annurev.micro.54.1.157.CrossRefGoogle ScholarPubMed
Delcroix, M., Sajid, M., Caffrey, C. R., Lim, K. C., Dvořák, J., Hsieh, I., Bahgat, M., Dissous, C. and McKerrow, J. H. (2006). A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. Journal of Biological Chemistry 281, 3931639329. doi: 10.1074/jbc.M607128200.CrossRefGoogle ScholarPubMed
DeMarco, R., Venancio, T. M. and Verjovski-Almeida, S. (2006). SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily. BMC Evolutionary Biology 6, 89. doi: 10.1186/1471-2148-6-89.CrossRefGoogle ScholarPubMed
Dinguirard, N. and Yoshino, T. P. (2006). Potential role of a CD36-like class B scavenger receptor in the binding of modified low-density lipoprotein (acLDL) to the tegumental surface of Schistosoma mansoni sporocysts. Molecular and Biochemical Parasitology 146, 219230. doi: 10.1016/j.molbiopara.2005.12.010.CrossRefGoogle Scholar
Dvořák, J., Beckmann, S., Lim, K. C., Engel, J. C., Grevelding, C. G., McKerrow, J. H. and Caffrey, C. R. (2010). Biolistic transformation of Schistosoma mansoni: Studies with modified reporter-gene constructs containing regulatory regions of protease genes. Molecular and Biochemical Parasitology 170, 3740. doi: 10.1016/j.molbiopara.2009.11.001.CrossRefGoogle ScholarPubMed
Feinberg, E. H. and Hunter, C. P. (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 15451547. doi: 10.1126/science.1087117.CrossRefGoogle ScholarPubMed
Feschotte, C. (2004). Merlin, a new superfamily of DNA transposons identified in diverse animal genomes and related to bacterial IS1016 insertion sequences. Molecular Biology and Evolution 21, 17691780. doi: 10.1093/molbev/msh188.CrossRefGoogle ScholarPubMed
Finken-Eigen, M. and Kunz, W. (1997). Schistosoma mansoni: gene structure and localization of a homologue to cysteine protease ER 60. Experimental Parasitology 86, 17. doi: 10.1006/expr.1996.4123.CrossRefGoogle ScholarPubMed
Fischer, A., Hofmann, I., Naumann, K. and Reuter, G. (2006). Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. Journal of Plant Physiology 163, 358-368. doi: 10.1016/j.jplph.2005.10.015.CrossRefGoogle ScholarPubMed
Freitas, T. C., Jung, E. and Pearce, E. J. (2007). TGF-beta signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathogens 3, e52. doi: 10.1371/journal.ppat.0030052.CrossRefGoogle ScholarPubMed
Grevelding, C. G. (2006). Transgenic flatworms. In Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Control (ed. Maule, A. G. and Marks, N. J.), pp. 149166. CABI Publishing, Wallingford, Oxon, UK.Google Scholar
Hagen, J., Lee, E. F., Fairlie, W. D. and Kalinna, B. H. (2011). Functional genomics approaches in parasitic helminths. Parasite Immunology, in press. doi: 10.1111/j.1365-3024.2011.01306.xGoogle Scholar
Hara, T., Yasuda, K. and Fukuma, T. (2002). Effective gene transfer into Trypanosoma brucei bloodstream forms by particle bombardment. Molecular and Biochemical Parasitology 119, 117119. doi: 10.1016/S0166-6851(01)00384-X.CrossRefGoogle ScholarPubMed
Heyers, O., Walduck, A. K., Brindley, P. J., Bleiss, W., Lucius, R., Dorbic, T., Wittig, B. and Kalinna, B. H. (2003). Schistosoma mansoni miracidia transformed by particle bombardment infect Biomphalaria glabrata snails and develop into transgenic sporocysts. Experimental Parasitology 105, 174178. doi: 10.1016/j.exppara.2003.11.001.CrossRefGoogle ScholarPubMed
Higazi, T. B., Merriweather, A., Shu, L., Davis, R. and Unnasch, T. R. (2002). Brugia malayi: transient transfection by microinjection and particle bombardment. Experimental Parasitology 100, 95102. doi: 10.1016/S0014-4894(02)00004-8.CrossRefGoogle ScholarPubMed
Jourdane, J., Liang, Y. S. and Bruce, J. I. (1985). Transplantation of Schistosoma japonicum daughter sporocysts in Oncomelania hupensis. Journal of Parasitology 71, 244247.CrossRefGoogle ScholarPubMed
Jourdane, J. and Theron, A. (1980). Schistosoma mansoni: cloning by microsurgical transplantation of sporocysts. Experimental Parasitology 50, 349357.CrossRefGoogle ScholarPubMed
Ketting, R. F. (2011). The many faces of RNAi. Developmental Cell 20, 148161. doi: 10.1016/j.devcel.2011.01.012.CrossRefGoogle ScholarPubMed
Kines, K. J., Mann, V. H., Morales, M. E., Shelby, B. D., Kalinna, B. H., Gobert, G. N., Chirgwin, S. R. and Brindley, P. J. (2006). Transduction of Schistosoma mansoni by vesicular stomatitis virus glycoprotein-pseudotyped Moloney murine leukemia retrovirus. Experimental Parasitology 112, 209220. doi: 10.1016/j.exppara.2006.02.003.CrossRefGoogle ScholarPubMed
Kines, K. J., Morales, M. E., Mann, V. H., Gobert, G. N. and Brindley, P. J. (2008). Integration of reporter transgenes into Schistosoma mansoni chromosomes mediated by pseudotyped murine leukemia virus. FASEB Journal 22, 29362948. doi: 10.1096/fj.08-108308.CrossRefGoogle ScholarPubMed
Kines, K. J., Rinaldi, G., Okatcha, T. I., Morales, M. E., Mann, V. H., Tort, J. F. and Brindley, P. J. (2010). Electroporation facilitates introduction of reporter transgenes and virions into schistosome eggs. PLoS Neglected Tropical Diseases 4, e593. doi: 10.1371/journal.pntd.0000593.CrossRefGoogle ScholarPubMed
Krautz-Peterson, G., Bhardwaj, R., Faghiri, Z., Tararam, C. A. and Skelly, P. J. (2010 a). RNA interference in schistosomes: machinery and methodology. Parasitology 137, 485495. doi: 10.1017/S0031182009991168.CrossRefGoogle ScholarPubMed
Krautz-Peterson, G., Radwanska, M., Ndegwa, D., Shoemaker, C. B. and Skelly, P. J. (2007). Optimizing gene suppression in schistosomes using RNA interference. Molecular and Biochemical Parasitology 153, 194202. doi: 10.1016/j.molbiopara.2007.03.006.CrossRefGoogle ScholarPubMed
Krautz-Peterson, G., Simoes, M., Faghiri, Z., Ndegwa, D., Oliveira, G., Shoemaker, C. B. and Skelly, P. J. (2010 b). Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathogens 6, e1000932. doi: 10.1371/journal.ppat.1000932.CrossRefGoogle ScholarPubMed
Krautz-Peterson, G. and Skelly, P. J. (2008 a). Schistosome asparaginyl endopeptidase (legumain) is not essential for cathepsin B1 activation in vivo. Molecular and Biochemical Parasitology 159, 5458. doi: 10.1016/j.molbiopara.2007.12.011.CrossRefGoogle Scholar
Krautz-Peterson, G. and Skelly, P. J. (2008 b). Schistosoma mansoni: the dicer gene and its expression. Experimental Parasitology 118, 112128. doi: 10.1016/j.exppara.2007.06.013.CrossRefGoogle ScholarPubMed
Kuntz, A. N., Davioud-Charvet, E., Sayed, A. A., Califf, L. L., Dessolin, J., Arner, E. S. and Williams, D. L. (2007). Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Medicine 4: e206. doi: 10.1371/journal.pmed.0040206.CrossRefGoogle Scholar
Kumagai, T., Osada, Y., Ohta, N. and Kanazawa, T. (2009). Peroxiredoxin-1 from Schistosoma japonicum functions as a scavenger against hydrogen peroxide but not nitric oxide. Molecular and Biochemical Parasitology 164, 2631. doi: 10.1016/j.molbiopara.2008.11.002.CrossRefGoogle Scholar
Kusel, J. R., McVeigh, P. and Thornhill, J. A. (2009). The schistosome excretory system: a key to regulation of metabolism, drug excretion and host interaction. Trends in Parasitology 25, 353358. doi: 10.1016/j.pt.2009.05.003.CrossRefGoogle ScholarPubMed
Laski, F. A., Rio, D. C. and Rubin, G. M. (1986). Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 719. doi: 10.1016/0092-8674(86)90480-0.CrossRefGoogle ScholarPubMed
Luo, R., Xue, X., Wang, Z., Sun, J., Zou, Y. and Pan, W. (2010). Analysis and characterization of the genes encoding Dicer and Argonaute proteins of Schistosoma japonicum. Parasites & Vectors 17, 90. doi: 10.1186/1756-3305-3-90.CrossRefGoogle Scholar
MacGregor, A. N. and Shore, S. J. (1990). Immunocytochemistry of cytoskeletal proteins in adult Schistosoma mansoni. International Journal for Parasitology 20, 279284. doi: 10.1016/0020-7519(90)90141-9.CrossRefGoogle ScholarPubMed
Mann, V. H., Morales, M. E., Kines, K. J. and Brindley, P. J. (2008). Transgenesis of schistosomes: approaches employing mobile genetic elements. Parasitology 135, 141153. doi: 10.1017/S0031182007003824.CrossRefGoogle ScholarPubMed
Matzke, M. A., Mette, M. F. and Matzke, A. J. (2000). Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology 43, 401415. doi: 10.1023/A:1006484806925.CrossRefGoogle ScholarPubMed
McVeigh, P., Mair, G. R., Novozhilova, E., Day, A., Zamanian, M., Marks, N. J., Kimber, M. J., Day, T. A. and Maule, A. G. (2011). Schistosome I/Lamides – A new family of bioactive helminth neuropeptides. International Journal for Parasitology 41, 905913. doi: 10.1016/j.ijpara.2011.03.010.CrossRefGoogle ScholarPubMed
Meissner, M., Agop-Nersesian, C. and Sullivan, W. J. Jr. (2007). Molecular tools for analysis of gene function in parasitic microorganisms. Applied Microbiology and Biotechnology 75, 963975. doi: 10.1007/s00253-007-0946-4.CrossRefGoogle ScholarPubMed
Morales, M. E., Mann, V. H., Kines, K. J., Gobert, G. N., Fraser, M. J. Jr., Kalinna, B. H., Correnti, J. M., Pearce, E. J. and Brindley, P. J. (2007). piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB Journal 21, 34793489. doi: 10.1096/fj.07-8726com.CrossRefGoogle ScholarPubMed
Morales, M. E., Rinaldi, G., Gobert, G. N., Kines, K. J., Tort, J. F. and Brindley, P. J. (2008). RNA interference of Schistosoma mansoni cathepsin D, the apical enzyme of the hemoglobin proteolysis cascade. Molecular and Biochemical Parasitology 157, 160168. doi: 10.1016/j.molbiopara.2007.10.009.CrossRefGoogle ScholarPubMed
Mourão, M. M., Dinguirard, N., Franco, G. R. and Yoshino, T. P. (2009 a). Phenotypic screen of early-developing larvae of the blood fluke, schistosoma mansoni, using RNA interference. PLoS Neglected Tropical Diseases 3, e502. doi: 10.1371/journal.pntd.0000502.CrossRefGoogle ScholarPubMed
Mourão, M. M., Dinguirard, N., Franco, G. R. and Yoshino, T. P. (2009 b). Role of the endogenous antioxidant system in the protection of Schistosoma mansoni primary sporocysts against exogenous oxidative stress. PLoS Neglected Tropical Diseases 3, e550. doi: 10.1371/journal.pntd.0000550.CrossRefGoogle Scholar
Nabhan, J. F., El-Shehabi, F., Patocka, N. and Ribeiro, P. (2007). The 26S proteasome in Schistosoma mansoni: bioinformatics analysis, developmental expression, and RNA interference (RNAi) studies. Experimental Parasitology 117, 337347. doi: 10.1016/j.exppara.2007.08.002.CrossRefGoogle ScholarPubMed
Ndegwa, D., Krautz-Peterson, G. and Skelly, P. J. (2007). Protocols for gene silencing in schistosomes. Experimental Parasitology 117, 284291. doi: 10.1016/j.exppara.2007.07.012.CrossRefGoogle ScholarPubMed
Neumann, S., Ziv, E., Lantner, F. and Schechter, I. (1993). Regulation of HSP70 gene expression during the life cycle of the parasitic helminth Schistosoma mansoni. European Journal of Biochemistry 212, 589596. doi: 10.1111/j.1432-1033.1993.tb17697.x.CrossRefGoogle ScholarPubMed
Nollen, P. M., Floyd, R. D., Kolzow, R. G. and Deter, D. L. (1976). The timing of reproductive cell development and movement in Schistosoma mansoni, S. japonicum, and S. haematobium, using techniques of autoradiography and transplantation. Journal of Parasitology 62, 227231.CrossRefGoogle ScholarPubMed
Oliveira, G., Franco, G. and Verjovski-Almeida, S. (2008). The Brazilian contribution to the study of the Schistosoma mansoni transcriptome. Acta Tropica 108, 179182. doi: 10.1016/j.actatropica.2008.04.022.CrossRefGoogle Scholar
Osman, A., Niles, E. G., Verjovski-Almeida, S. and LoVerde, P. T. (2006). Schistosoma mansoni TGF-beta receptor II: role in host ligand-induced regulation of schistosome target gene. PLoS pathogens 2, e54. doi: 10.1371/journal.ppat.0020054.CrossRefGoogle ScholarPubMed
Pereira, T. C., Pascoal, V. D., Marchesini, R. B., Maia, I. G., Magalhaes, L. A., Zanotti-Magalhaes, E. M. and Lopes-Cendes, I. (2008). Schistosoma mansoni: evaluation of an RNAi-based treatment targeting HGPRTase gene. Experimental Parasitology 118, 619623. doi: 10.1016/j.exppara.2007.11.017.CrossRefGoogle ScholarPubMed
Reichel, C., Mathur, J., Eckes, P., Langenkemper, K., Koncz, C., Schell, J., Reiss, B. and Maas, C. (1996). Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proceedings of the National Academy of Sciences, USA 93, 58885893.CrossRefGoogle Scholar
Rinaldi, G., Morales, M. E., Alrefaei, Y. N., Cancela, M., Castillo, E., Dalton, J. P., Tort, J. F. and Brindley, P. J. (2009). RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs. Molecular and Biochemical Parasitology 167, 118126. doi: 10.1016/j.molbiopara.2009.05.002.CrossRefGoogle ScholarPubMed
Rinaldi, G., Suttiprapa, S. and Brindley, P. J. (2011). Quantitative retrotransposon anchored PCR confirms transduction efficiency of transgenes in adult Schistosoma mansoni. Molecular and Biochemical Parasitology 177, 7076. doi: 10.1016/j.molbiopara.2011.01.007.CrossRefGoogle ScholarPubMed
Rossi, A., Wippersteg, V., Klinkert, M. Q. and Grevelding, C. G. (2003). Cloning of 5′ and 3′ flanking regions of the Schistosoma mansoni calcineurin A gene and their characterization in transiently transformed parasites. Molecular and Biochemical Parasitology 130, 133138. doi: 10.1016/S0166-6851(03)00158-0.CrossRefGoogle ScholarPubMed
Sbicego, S., Schnaufer, A. and Blum, B. (1998). Transient and stable transfection of Leishmania by particle bombardment. Molecular and Biochemical Parasitology 94, 123126. doi: 10.1016/S0166-6851(98)00061-9.CrossRefGoogle ScholarPubMed
Skelly, P. J., Da'dara, A. and Harn, D. A. (2003). Suppression of Cathepsin B expression in Schistosoma mansoni by RNA interference. International Journal for Parasitology 33, 363369. doi: 10.1016/S0020-7519(03)00030-4.CrossRefGoogle ScholarPubMed
Spiliotis, M., Lechner, S., Tappe, D., Scheller, C., Krohne, G. and Brehm, K. (2008). Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. International Journal for Parasitology 38, 10251039. doi: 10.1016/j.ijpara.2007.11.002.CrossRefGoogle ScholarPubMed
Stefanić, S., Dvořák, J., Horn, M., Braschi, S., Sojka, D., Ruelas, D. S., Suzuki, B., Lim, K. C., Hopkins, S. D., McKerrow, J. H. and Caffrey, C. R. (2010). RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Neglected Tropical Diseases 4, e850. doi: 10.1371/journal.pntd.0000850.CrossRefGoogle ScholarPubMed
Swierczewski, B. E. and Davies, S. J. (2009). A schistosome cAMP-dependent protein kinase catalytical subunit is essential for parasite viability. PLoS Neglected Tropical Diseases 3, e505. doi: 10.1371/journal.pntd.0000505.CrossRefGoogle Scholar
Taft, A. S. and Yoshino, T. P. (2011). Cloning and functional characterization of two calmodulin genes during larval development in the parasitic flatworm Schistosoma mansoni. Journal of Parasitology 97, 7281. doi: 10.1645/GE-2586.1.CrossRefGoogle ScholarPubMed
Tan, H. H., Thornhill, J. A., Al-Adhami, B. H., Akhkha, A. and Kusel, J. R. (2003). A study of the effect of surface damage on the uptake of Texas Red-BSA by schistosomula of Schistosoma mansoni. Parasitology 126, 235240.CrossRefGoogle ScholarPubMed
Tchoubrieva, E. B., Ong, P. C., Pike, R. N., Brindley, P. J. and Kalinna, B. H. (2010). Vector-based RNA interference of cathepsin B1 in Schistosoma mansoni. Cellular and Molecular Life Sciences 67, 37393748. doi: 10.1007/s00018-010-0345-3.CrossRefGoogle ScholarPubMed
The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009). The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345351. doi: 10.1038/nature08140.CrossRefGoogle Scholar
Thomas, M. C., Macias, F., Alonso, C. and Lopez, M. C. (2010). The biology and evolution of transposable elements in parasites. Trends in Parasitology 26, 350362. doi: 10.1007/s00018-010-0345-3.CrossRefGoogle ScholarPubMed
Tissier, A. F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M. A., Murphy, G. and Jones, J. D. (1999). Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11, 18411852.CrossRefGoogle ScholarPubMed
Tran, M. H., Freitas, T. C., Cooper, L., Gaze, S., Gatton, M. L., Jones, M. K., Lovas, E., Pearce, E. J. and Loukas, A. (2010). Suppression of mRNAs encoding tegument tetraspanins from Schistosoma mansoni results in impaired tegument turnover. PLoS Pathogens 6, e1000840. doi: 10.1371/journal.ppat.1000840.CrossRefGoogle ScholarPubMed
Venancio, T. M., Wilson, R. A., Verjovski-Almeida, S. and DeMarco, R. (2010). Bursts of transposition from non-long terminal repeat retrotransposon families of the RTE clade in Schistosoma mansoni. International Journal for Parasitology 40, 743749. doi: 10.1016/j.ijpara.2009.11.013.CrossRefGoogle ScholarPubMed
Wilm, T., Demel, P., Koop, H. U., Schnabel, H. and Schnabel, R. (1999). Ballistic transformation of Caenorhabditis elegans. Gene 229, 3135.CrossRefGoogle ScholarPubMed
Wippersteg, V., Kapp, K., Kunz, W. and Grevelding, C. G. (2002 a). Characterisation of the cysteine protease ER60 in transgenic Schistosoma mansoni larvae. International Journal for Parasitology 32, 12191224. doi: 10.1016/S0020-7519(02)00092-9.CrossRefGoogle ScholarPubMed
Wippersteg, V., Kapp, K., Kunz, W., Jackstadt, W. P., Zahner, H. and Grevelding, C. G. (2002 b). HSP70-controlled GFP expression in transiently transformed schistosomes. Molecular and Biochemical Parasitology 120, 141150. doi: 10.1016/S0166-6851(01)00446-7.CrossRefGoogle ScholarPubMed
Wippersteg, V., Ribeiro, F., Liedtke, S., Kusel, J. R. and Grevelding, C. G. (2003). The uptake of Texas Red-BSA in the excretory system of schistosomes and its colocalisation with ER60 promoter-induced GFP in transiently transformed adult males. International Journal for Parasitology 33, 11391143. doi: 10.1016/S0020-7519(03)00168-1.CrossRefGoogle ScholarPubMed
Wippersteg, V., Sajid, M., Walshe, D., Khiem, D., Salter, J. P., McKerrow, J. H., Grevelding, C. G. and Caffrey, C. R. (2005). Biolistic transformation of Schistosoma mansoni with 5′ flanking regions of two peptidase genes promotes tissue-specific expression. International Journal for Parasitology 35, 583589. doi: 10.1016/j.ijpara.2005.02.002.CrossRefGoogle ScholarPubMed
Wu, W., Cai, P., Chen, Q. and Wang, H. (2011). Identification of novel antigens within the Schistosoma japonicum tetraspanin family based on molecular characterization. Acta Tropica 117, 216224. doi: 10.1016/j.actatropica.2011.01.001.CrossRefGoogle ScholarPubMed
Yang, S., Brindley, P. J., Zeng, Q., Li, Y., Zhou, J., Liu, Y., Liu, B., Cai, L., Zeng, T., Wei, Q., Lan, L. and McManus, D. P. (2010). Transduction of Schistosoma japonicum schistosomules with vesicular stomatitis virus glycoprotein pseudotyped murine leukemia retrovirus and expression of reporter human telomerase reverse transcriptase in the transgenic schistosomes. Molecular and Biochemical Parasitology 174, 109116. doi: 10.1016/j.molbiopara.2010.07.007.CrossRefGoogle ScholarPubMed
Yoshino, T. P., Dinguirard, N. and Mourao, M. M. (2010). In vitro manipulation of gene expression in larval Schistosoma: a model for postgenomic approaches in Trematoda. Parasitology 137, 463483. doi: 10.1017/S0031182009991302.CrossRefGoogle ScholarPubMed
Yuan, X. S., Shen, J. L., Wang, X. L., Wu, X. S., Liu, D. P., Dong, H. F. and Jiang, M. S. (2005). Schistosoma japonicum: a method for transformation by electroporation. Experimental Parasitology 111, 244249. doi: 10.1016/j.exppara.2005.08.010.CrossRefGoogle ScholarPubMed
Zhao, Z. R., Lei, L., Liu, M., Zhu, S. C., Ren, C. P., Wang, X. N. and Shen, J. J. (2008). Schistosoma japonicum: inhibition of Mago nashi gene expression by shRNA-mediated RNA interference. Experimental Parasitology 119, 379384. doi: 10.1016/j.exppara.2008.03.015.CrossRefGoogle ScholarPubMed
Zou, X., Jin, Y. M., Liu, P. P., Wu, Q. J., Liu, J. M. and Lin, J. J. (2011). RNAi silencing of calcium-regulated heat-stable protein of 24 kDa in Schistosoma japonicum affects parasite growth. Parasitology Research 108, 567572. doi: 10.1007/s00436-010-2099-0.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Paving the way for transgenic schistosomes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Paving the way for transgenic schistosomes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Paving the way for transgenic schistosomes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *