Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-dr4jh Total loading time: 0.324 Render date: 2021-06-19T17:10:31.071Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Identification of Besnoitia besnoiti proteins that showed differences in abundance between tachyzoite and bradyzoite stages by difference gel electrophoresis

Published online by Cambridge University Press:  18 April 2013

AURORA FERNÁNDEZ-GARCÍA
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
GEMA ALVAREZ-GARCÍA
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
VIRGINIA MARUGÁN-HERNÁNDEZ
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
PAULA GARCÍA-LUNAR
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
ADRIANA AGUADO-MARTÍNEZ
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
VERÓNICA RISCO-CASTILLO
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
LUIS M. ORTEGA-MORA
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
Corresponding
E-mail address:

Summary

Bovine besnoitiosis is a chronic and debilitating disease, caused by the apicomplexan parasite Besnoitia besnoiti. Infection of cattle by B. besnoiti is governed by the tachyzoite stage, which is related to acute infection, and the bradyzoite stage gathered into macroscopic cysts located in subcutaneous tissue in the skin, mucosal membranes and sclera conjunctiva and related to persistence and chronic infection. However, the entire life cycle of this parasite and the molecular mechanisms underlying tachyzoite-to-bradyzoite conversion remain unknown. In this context, a different antigenic pattern has been observed between tachyzoite and bradyzoite extracts. Thus, to identify stage-specific proteins, a difference gel electrophoresis (DIGE) approach was used on tachyzoite and bradyzoite extracts followed by mass spectrometry (MS) analysis. A total of 130 and 132 spots were differentially expressed in bradyzoites and tachyzoites, respectively (average ratio±1·5, P<0·05 in t-test). Furthermore, 25 differentially expressed spots were selected and analysed by MALDI-TOF/MS. As a result, 5 up-regulated bradyzoite proteins (GAPDH, ENO1, LDH, SOD and RNA polymerase) and 5 up-regulated tachyzoite proteins (ENO2; LDH; ATP synthase; HSP70 and PDI) were identified. The present results set the basis for the identification of new proteins as drug targets. Moreover, the role of these proteins in tachyzoite-to-bradyzoite conversion and the role of the host cell environment should be a subject of further research.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Agosti, M., Belloni, A., Morini, M. and Vacirca, G. (1994). Segnalazione di un focolaio di Besnoitiosi in bovine da carne importati. Praxis 15, 56.Google Scholar
Alban, A., David, S. O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S. and Currie, I. (2003). A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 3644. doi: 10.1002/pmic.200390006.CrossRefGoogle ScholarPubMed
Alzieu, J. P. (2007). Re-emerging cattle besnoitiosis (Besnoitia besnoiti) in France: update on clinical and epidemiological aspects. In 21st International Conference WAAVP, Gante, Belgium, p. 222.Google Scholar
Basso, W., Schares, G., Gollnick, N. S., Rutten, M. and Deplazes, P. (2011). Exploring the life cycle of Besnoitia besnoiti. Experimental infection of putative definitive and intermediate host species. Veterinary Parasitology 178, 223234. doi: 10.1016/j.vetpar.2011.01.027.CrossRefGoogle ScholarPubMed
Bigalke, R. D. (1968). New concepts on the epidemiological features of bovine besnoitiosis as determined by laboratory and field investigations. Onderstepoort Journal of Veterinary Research 35, 3137.Google ScholarPubMed
Boothroyd, J. C., Hehl, A., Knoll, L. J. and Manger, I. D. (1998). The surface of Toxoplasma: more and less. International Journal for Parasitology 28, 39. doi: 10.1016/S0020-7519(97)00182-3.CrossRefGoogle ScholarPubMed
Bradley, P. J., Ward, C., Cheng, S. J., Alexander, D. L., Coller, S., Coombs, G. H., Dunn, J. D., Ferguson, D. J., Sanderson, S. J., Wastling, J. M. and Boothroyd, J. C. (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host–parasite interactions in Toxoplasma gondii. Journal of Biological Chemistry 280, 3424534258. doi: 10.1074/jbc.M504158200.CrossRefGoogle ScholarPubMed
Che, F. Y., Madrid-Aliste, C., Burd, B., Zhang, H., Nieves, E., Kim, K., Fiser, A., Angeletti, R. H. and Weiss, L. M. (2011). Comprehensive proteomic analysis of membrane proteins in Toxoplasma gondii. Molecular and Cellular Proteomics 10, M110.000745. doi: 10.1074/mcp.M110.000745.CrossRefGoogle ScholarPubMed
Cho, M. H., Na, B. K., Song, K. J., Cho, J. H., Kang, S. W., Lee, K. H., Song, C. Y. and Kim, T. S. (2004). Cloning, expression, and characterization of iron-containing superoxide dismutase from Neospora caninum. Journal of Parasitology 90, 278285. doi: 10.1645/GE-3222.CrossRefGoogle ScholarPubMed
Cleary, M. D., Singh, U., Blader, I. J., Brewer, J. L. and Boothroyd, J. C. (2002). Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryotic Cell 1, 329340.CrossRefGoogle ScholarPubMed
Cohen, A. M., Rumpel, K., Coombs, G. H. and Wastling, J. M. (2002). Characterisation of global protein expression by two-dimensional electrophoresis and mass spectrometry: proteomics of Toxoplasma gondii. International Journal for Parasitology 32, 3951.CrossRefGoogle ScholarPubMed
Cortes, H. C., Reis, Y., Waap, H., Vidal, R., Soares, H., Marques, I., Pereira da Fonseca, I., Fazendeiro, I., Ferreira, M. L., Caeiro, V., Shkap, V., Hemphill, A. and Leitao, A. (2006). Isolation of Besnoitia besnoiti from infected cattle in Portugal. Veterinary Parasitology 141, 226233. doi: 10.1016/j.vetpar.2006.05.022.CrossRefGoogle ScholarPubMed
Debache, K., Guionaud, C., Alaeddine, F. and Hemphill, A. (2010). Intraperitoneal and intra-nasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites. Parasitology 137, 229240. doi: 10.1017/S0031182009991259.CrossRefGoogle ScholarPubMed
European Food Safety Authority (2010). Scientific statement on Bovine besnoitiosis. EFSA Journal 2010;8 (2). doi: 10.2903/j.efsa.2010.1499.Google Scholar
Fernández-García, A., Alvarez-García, G., Risco-Castillo, V., Aguado-Martínez, A., Marugán-Hernández, V. and Ortega-Mora, L. M. (2009 a). Pattern of recognition of Besnoitia besnoiti tachyzoite and bradyzoite antigens by naturally infected cattle. Veterinary Parasitology 164, 104110. doi: 10.1016/j.vetpar.2009.06.020.CrossRefGoogle ScholarPubMed
Fernández-García, A., Risco-Castillo, V., Pedraza-Díaz, S., Aguado-Martínez, A., Alvarez-García, G., Gómez-Bautista, M., Collantes-Fernández, E. and Ortega-Mora, L. M. (2009 b). First isolation of Besnoitia besnoiti from a chronically infected cow in Spain. Journal of Parasitology 95, 474476. doi: 10.1645/GE-1772.1.CrossRefGoogle ScholarPubMed
Florens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M., Haynes, J. D., Moch, J. K., Muster, N., Sacci, J. B., Tabb, D. L., Witney, A. A., Wolters, D., Wu, Y., Gardner, M. J., Holder, A. A., Sinden, R. E., Yates, J. R. and Carucci, D. J. (2002). A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520526. doi: 10.1038/nature01107.CrossRefGoogle ScholarPubMed
Gajria, B., Bahl, A., Brestelli, J., Dommer, J., Fischer, S., Gao, X., Heiges, M., Iodice, J., Kissinger, J. C., Mackey, A. J., Pinney, D. F., Roos, D. S., Stoeckert, C. J. Jr., Wang, H. and Brunk, B. P. (2008). ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Research 36, 553556. doi: 10.1093/nar/gkm981.CrossRefGoogle ScholarPubMed
García-Lunar, P., Regidor-Cerrillo, J., Gutiérrez-Expósito, D., Ortega-Mora, L. and Alvarez-García, G. (in press). First 2-DE approach towards characterising the proteome and immunome of Besnoitia besnoiti in the tachyzoite stage. Veterinary Parasitology. doi: 10.1016/j.vetpar.2012.12.040.Google Scholar
García-Lunar, P., Ortega-Mora, L. M., Schares, G., Gollnick, N. S., Jacquiet, P., Grisez, C., Prevot, F., Frey, C. F., Gottstein, B. and Alvarez-García, G. (2013). An inter-laboratory comparative study of serological tools employed in the diagnosis of Besnoitia besnoiti infection in bovines. Transboundary and Emerging Diseases 60, 5968. doi: 10.1111/j.1865-1682.2012.01318.x.CrossRefGoogle Scholar
Gentile, A., Militerno, G., Schares, G., Nanni, A., Testoni, S., Bassi, P. and Gollnick, N. S. (2012). Evidence for bovine besnoitiosis being endemic in Italy – first in vitro isolation of Besnoitia besnoiti from cattle born in Italy. Veterinary Parasitology 23, 108115. doi: 10.1016/j.vetpar.2011.09.014.CrossRefGoogle Scholar
Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. and Weiss, W. (2000). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 10371053.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Haas, A. and Goebel, W. (1991). Cloning and expression in Escherichia coli of a gene encoding superoxide dismutase from Listeria ivanovii. Free Radical Research Communications 12–13(Pt 1), 371377.CrossRefGoogle Scholar
Hemphill, A. and Gottstein, B. (2006). Neospora caninum and neosporosis – recent achievements in host and parasite cell biology and treatment. Acta Parasitologica 51, 1525.CrossRefGoogle Scholar
Innes, E. A. (2007). The host–parasite relationship in pregnant cattle infected with Neospora caninum. Parasitology 134, 19031910. doi: 10.1017/S0031182007000194.CrossRefGoogle ScholarPubMed
Irigoien, M., Del Cacho, E., Gallego, M., Lopez-Bernad, F., Quilez, J. and Sanchez-Acedo, C. (2000). Immunohistochemical study of the cyst of Besnoitia besnoiti. Veterinary Parasitology 91, 16.CrossRefGoogle ScholarPubMed
Lal, K., Bromley, E., Oakes, R., Prieto, J. H., Sanderson, S. J., Kurian, D., Hunt, L., Yates, J. R. III, Wastling, J. M., Sinden, R. E. and Tomley, F. M. (2009). Proteomic comparison of four Eimeria tenella life-cycle stages: unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics 9, 45664576. doi: 10.1002/pmic.200900305.CrossRefGoogle ScholarPubMed
Lee, E. G., Kim, J. H., Shin, Y. S., Shin, G. W., Suh, M. D., Kim, D. Y., Kim, Y. H., Kim, G. S. and Jung, T. S. (2003). Establishment of a two-dimensional electrophoresis map for Neospora caninum tachyzoites by proteomics. Proteomics 3, 23392350. doi: 10.1002/pmic.200300617.CrossRefGoogle ScholarPubMed
Liénard, E., Salem, A., Grisez, C., Prévot, F., Bergeaud, J. P., Franc, M., Gottstein, B., Alzieu, J. P., Lagalisse, Y. and Jacquiet, P. (2011). A longitudinal study of Besnoitia besnoiti infections and seasonal abundance of Stomoxys calcitrans in a dairy cattle farm of southwest France. Veterinary Parasitology 177, 2027. doi: 10.1016/j.vetpar.2010.11.030.CrossRefGoogle Scholar
Luo, Q., Upadhya, R., Zhang, H., Madrid-Aliste, C., Nieves, E., Kim, K., Angeletti, R. H. and Weiss, L. M. (2011). Analysis of the glycoproteome of Toxoplasma gondii using lectin affinity chromatography and tandem mass spectrometry. Microbes and Infection/Institut Pasteur 13, 11991210. doi: 10.1016/j.micinf.2011.08.013.CrossRefGoogle ScholarPubMed
Marcelino, E., Martins, T. M., Morais, J. B., Nolasco, S., Cortes, H., Hemphill, A., Leitão, A. and Novo, C. (2011). Besnoitia besnoiti protein disulfide isomerase (BbPDI): molecular characterization, expression and in silico modelling. Experimental Parasitology 129, 164174. doi: 10.1016/j.exppara.2011.06.012.CrossRefGoogle ScholarPubMed
Marugán-Hernández, V., Alvarez-García, G., Risco-Castillo, V., Regidor-Cerrillo, J. and Ortega-Mora, L. M. (2010). Identification of Neospora caninum proteins regulated during the differentiation process from tachyzoite to bradyzoite stage by DIGE. Proteomics 10, 17401750. doi: 10.1002/pmic.200900664.CrossRefGoogle ScholarPubMed
Marugán-Hernandez, V., Alvarez-García, G., Tomley, F., Hemphill, A., Regidor-Cerrillo, J. and Ortega-Mora, L. M. (2011). Identification of novel rhoptry proteins in Neospora caninum by LC/MS-MS analysis of subcellular fractions. Journal of Proteomics 74, 629642. doi: 10.1016/j.jprot.2011.02.004.CrossRefGoogle ScholarPubMed
Meek, B., Back, J. W., Klaren, V. N. A., Speijer, D. and Peek, R. (2002 a). Conserved regions of protein disulfide isomerase are targeted by natural IgA antibodies in humans. International Immunology 14, 12911301. doi: 10.1093/intimm/dxf091.CrossRefGoogle ScholarPubMed
Meek, B., Back, J. W., Klaren, V. N. A., Speijer, D. and Peek, R. (2002 b). Protein disulfide isomerase of Toxoplasma gondii is targeted by mucosal IgA antibodies in humans. FEBS Letters 522, 104108. doi: 10.1016/S0014-5793(02)02911-3.CrossRefGoogle ScholarPubMed
Michalski, W. P. and Prowse, S. J. (1991). Superoxide dismutases in Eimeria tenella. Molecular and Biochemical Parasitology 47, 189195.CrossRefGoogle ScholarPubMed
Miller, R. A. and Britigan, B. E. (1997). Role of oxidants in microbial pathophysiology. Clinical Microbiology Reviews 10, 118.Google ScholarPubMed
Mutinelli, F., Schiavon, E., Ceglie, L., Fasolato, M., Natale, A., Rampin, F. and Carminato, A. (2011). Bovine besnoitiosis in imported cattle in Italy. Veterinary Parasitology 178, 198. doi: 10.1016/j.vetpar.2010.12.019.CrossRefGoogle ScholarPubMed
Naguleswaran, A., Alaeddine, F., Guionaud, C., Vonlaufen, N., Sonda, S., Jenoe, P., Mevissen, M. and Hemphill, A. (2005). Neospora caninum protein disulfide isomerase is involved in tachyzoite-host cell interaction. International Journal for Parasitology 35, 14591472. doi: 10.1016/j.ijpara.2005.06.006.CrossRefGoogle ScholarPubMed
Odberg-Ferragut, C., Renault, J. P., Viscogliosi, E., Toursel, C., Briche, I., Engels, A., Lepage, G., Morgenstern-Badarau, I., Camus, D., Tomavo, S. and Dive, D. (2000). Molecular cloning, expression analysis and iron metal cofactor characterisation of a superoxide dismutase from Toxoplasma gondii. Molecular and Biochemical Parasitology 106, 121129.CrossRefGoogle ScholarPubMed
Pertoft, H., Johnsson, A., Wärmegård, B. and Seljelid, R. (1980). Separation of human monocytes on density gradients of percoll®. Journal of Immunological Methods 33, 221229. doi: 10.1016/S0022-1759(80)80012-3.Google Scholar
Pols, J. (1960). Studies on bovine besnoitiosis with special reference to the aetiology. Onderstepoort Journal of Veterinary Research 28, 264356.Google Scholar
Radke, J. R., Behnke, M. S., Mackey, A. J., Radke, J. B., Roos, D. S. and White, M. W. (2005). The transcriptome of Toxoplasma gondii. BMC Biology 3, 26. doi: 10.1186/1741-7007-3-26.CrossRefGoogle ScholarPubMed
Regidor-Cerrillo, J., Alvarez-García, G., Pastor-Fernández, I., Marugán-Hernández, V., Gómez-Bautista, M. and Ortega-Mora, L. M. (2012). Proteome expression changes among virulent and attenuated Neospora caninum isolates. Journal of Proteomics 75, 23062318. doi: 10.1016/j.jprot.2012.01.039.CrossRefGoogle ScholarPubMed
Reid, A. J., Vermont, S. J., Cotton, J. A., Harris, D., Hill-Cawthorne, G. A., Konen-Waisman, S., Latham, S. M., Mourier, T., Norton, R., Quail, M. A., Sanders, M., Shanmugam, D., Sohal, A., Wasmuth, J. D., Brunk, B., Grigg, M. E., Howard, J. C., Parkinson, J., Roos, D. S., Trees, A. J., Berriman, M., Pain, A. and Wastling, J. M. (2012). Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: coccidia differing in host range and transmission strategy. PLoS Pathogens 8, e1002567. doi: 10.1371/journal.ppat.1002567.CrossRefGoogle ScholarPubMed
Risco-Castillo, V., Fernández-García, A. and Ortega-Mora, L. M. (2004). Comparative analysis of stress agents in a simplified in vitro system of Neospora caninum bradyzoite production. Journal of Parasitology 90, 466470. doi: 10.1645/GE-3298.CrossRefGoogle Scholar
Risco-Castillo, V., Marugán-Hernández, V., Fernández-García, A., Aguado-Martínez, A., Jiménez-Ruiz, E., Rodríguez-Marco, S., Alvarez-García, G. and Ortega-Mora, L. M. (2011). Identification of a gene cluster for cell-surface genes of the SRS superfamily in Neospora caninum and characterization of the novel SRS9 gene. Parasitology 138, 18321842. doi: 10.1017/S0031182011001351.CrossRefGoogle ScholarPubMed
Schares, G., Basso, W., Majzoub, M., Cortes, H. C., Rostaher, A., Selmair, J., Hermanns, W., Conraths, F. J. and Gollnick, N. S. (2009). First in vitro isolation of Besnoitia besnoiti from chronically infected cattle in Germany. Veterinary Parasitology 163, 315322. doi: 10.1016/j.vetpar.2009.04.033.CrossRefGoogle ScholarPubMed
Schares, G., Basso, W., Majzoub, M., Rostaher, A., Scharr, J. C., Langenmayer, M. C., Selmair, J., Dubey, J. P., Cortes, H. C., Conraths, F. J. and Gollnick, N. S. (2010). Comparative evaluation of immunofluorescent antibody and new immunoblot tests for the specific detection of antibodies against Besnoitia besnoiti tachyzoites and bradyzoites in bovine sera. Veterinary Parasitology 171, 3240. doi: 10.1016/j.vetpar.2010.03.017.CrossRefGoogle ScholarPubMed
Sechi, S. and Chait, B. T. (1998). Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Analytical Chemistry 70, 51505158.CrossRefGoogle ScholarPubMed
Shin, Y. S., Lee, E. G., Shin, G. W., Kim, Y. R., Lee, E. Y., Kim, J. H., Jang, H., Gershwin, L. J., Kim, D. Y., Kim, Y. H., Kim, G. S., Suh, M. D. and Jung, T. S. (2004). Identification of antigenic proteins from Neospora caninum recognized by bovine immunoglobulins M, E, A and G using immunoproteomics. Proteomics 4, 36003609.CrossRefGoogle Scholar
Shin, Y. S., Shin, G. W., Kim, Y. R., Lee, E. Y., Yang, H. H., Palaksha, K. J., Youn, H. J., Kim, J. H., Kim, D. Y., Marsh, A. E., Lakritz, J. and Jung, T. S. (2005). Comparison of proteome and antigenic proteome between two Neospora caninum isolates. Veterinary Parasitology 134, 4152.CrossRefGoogle ScholarPubMed
Shkap, V., Pipano, E. and Greenblatt, C. (1987). Cultivation of Besnoitia besnoiti and evaluation of susceptibility of laboratory animals to cultured parasites. Veterinary Parasitology 23, 169178.CrossRefGoogle ScholarPubMed
Tomavo, S. (2001). The differential expression of multiple isoenzyme forms during stage conversion of Toxoplasma gondii: an adaptive developmental strategy. International Journal for Parasitology 31, 10231031. doi: 10.1016/S0020-7519(01)00193-X.CrossRefGoogle ScholarPubMed
Vonlaufen, N., Guetg, N., Naguleswaran, A., Muller, N., Bjorkman, C., Schares, G., von Blumroeder, D., Ellis, J. and Hemphill, A. (2004). In vitro induction of Neospora caninum bradyzoites in Vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infection and Immunity 72, 576583.CrossRefGoogle ScholarPubMed
Weiss, L. M., Laplace, D., Takvorian, P. M., Tanowitz, H. B., Cali, A. and Wittner, M. (1995). A cell culture system for study of the development of Toxoplasma gondii bradyzoites. Journal of Eukaryotic Microbiology 42, 150157.CrossRefGoogle ScholarPubMed
Weiss, L. M., Ma, Y. F., Takvorian, P. M., Tanowitz, H. B. and Wittner, M. (1998). Bradyzoite development in Toxoplasma gondii and the HSP70 stress response. Infection and Immunity 66, 32953302.Google ScholarPubMed
Weiss, L. M., Fiser, A., Angeletti, R. H. and Kim, K. (2009). Toxoplasma gondii proteomics. Expert Review of Proteomics 6, 303313.CrossRefGoogle ScholarPubMed
Yang, S. and Parmey, S. F. (1997). Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184, 112.CrossRefGoogle ScholarPubMed
10
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Identification of Besnoitia besnoiti proteins that showed differences in abundance between tachyzoite and bradyzoite stages by difference gel electrophoresis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Identification of Besnoitia besnoiti proteins that showed differences in abundance between tachyzoite and bradyzoite stages by difference gel electrophoresis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Identification of Besnoitia besnoiti proteins that showed differences in abundance between tachyzoite and bradyzoite stages by difference gel electrophoresis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *