Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-pl66f Total loading time: 0.241 Render date: 2021-09-22T21:48:08.572Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Comparison of glycolysis and glutaminolysis in Onchocerca volvulus and Brugia pahangi by 13C nuclear magnetic resonance spectroscopy

Published online by Cambridge University Press:  06 April 2009

N. E. MacKenzie
Affiliation:
Department of Pharmaceutical Sciences, University of Arizona, Tucson, AZ 85721
E. A. Van De Waa
Affiliation:
Department of Microbiology and Public Health and Department of Medicinal Chemistry, University of Washington, Seattle, WA 98185
P. R. Gooley
Affiliation:
Department of Pharmaceutical Sciences, University of Arizona, Tucson, AZ 85721
J. F. Williams
Affiliation:
Department of Microbiology and Public Health and
J. L. Bennett
Affiliation:
Department of Pharmacology and Toxicolgy, Michigan State University, East Lansing, MI 48823
S. M. Bjorge
Affiliation:
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98185
T. A. Baille
Affiliation:
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98185
T. G. Geary
Affiliation:
The Upjohn Company, Parasitology Research, Kalamazoo, MI 49001

Summary

Comparison of glycolysis in Brugia pahangi and Onchocerca volvulus by C nuclear magnetic resonance (NMR) spectroscopy showed that the former organism is predominantly a lactate fermenter and the latter resembles more closely the metabolism of a mixed acid fermenter producing lactate, succinate, acetate, ethanol, formate and carbon dioxide. Both organisms synthesize glycogen as a storage carbohydrate. Glutaminolysis in both organisms proceeds by the δ-aminobutyrate shunt to produce succinate which is then further metabolized to acetate and carbon dioxide as end-products.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albro, P. W. (1975). Determination of protein in preparations of microsomes. Analytical Biochemistry 64, 485–93.CrossRefGoogle ScholarPubMed
Barrett, J. (1981). Biochemistry of Parasitic Helminths. Baltimore: University Park Press.CrossRefGoogle Scholar
Barrett, J., Mendis, A. H. W. & Butterworth, P. E. (1986). Carbohydrate metabolism in Brugia pahangi (Nematoda; Filariodea). International Journal for Parasitology 16, 465–9.CrossRefGoogle Scholar
Barron, K. D., Rogers, P. L. & Smith, G. M. (1986). N M R studies of [l-2H]glucose metabolism in Zymomonas mobilis. European Journal of Biochemistry 157, 195202.CrossRefGoogle Scholar
Baxter, R. L., MacKenzie, N. E. & Scott, A. I. (1983). CMR as a probe for metabolic pathways in vivo. In Biological Magnetic Resonance, vol. 5 (ed. Berliner, L. J) pp. 120. New York: Plenum.Google Scholar
Behm, C. A., Bryant, C. & Jones, A. J.(1987). Studies of glucose metabolism in Hymenolepis diminuta using 13C nuclear magnetic resonance. International Journal for Parasitology 17, 1333–61.CrossRefGoogle Scholar
Blackburn, B. J., Hutton, H. M., Novak, M. & Evans, W. S. (1986). Hymenolepis diminuta: Nuclear magnetic resonance analysis of the excretory products resulting from the metabolism of D-[13C6]glucose. Experimental Parasitology 62, 381–8.CrossRefGoogle Scholar
Christie, D. A., Powell, J. W., Stables, J. N. & Watt, R. A. (1987). A nuclear magnetic resonance study of the role of phosphoenol pyruvate carboxykinase (PEPCK) in the glucose metabolism of Dipetalomena viteae. Molecular and Biochemical Parasitology 24, 125–30.CrossRefGoogle ScholarPubMed
Cohen, S. M. (1987). Applications of 13C-NMR to the study of metabolic regulation in the living cell. In NMR Spectroscopy of Cells and Organisms, vol. 1, (ed. Gupta, P. K), pp. 3149. Florida: CRC Press Inc.Google Scholar
Cox, R. B. & Zatman, L. J. (1973). Isocitrate lyase and adenosine triphosphate malate lyase as key enzymes for the methylotrophic growth of bacterium 5H2. Biochemical Society Transactions 1, 669–70.CrossRefGoogle Scholar
Darling, T. N., Davis, D. G., London, R. E. & Blum, J. J. (1987). Products of Leishmania braziliensis glucose catabolism: Release of D-lactate and, under anaerobic conditions, glycerol. Proceedings of the National Academy of Sciences, USA 84, 7129–33.CrossRefGoogle ScholarPubMed
Den Hollander, J. A., Brown, T. R., Ugurbil, K. & Shulman, R. (1979). 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells. Proceedings of the National Academy of Sciences, USA 76, 6096–100.CrossRefGoogle Scholar
Deslauries, R., Ekiel, I., Kroft, T., Leveille, L. & Smith, I. C. P. (1984). NMR Studies of malaria: glycolysis in red cells of mice infected with Plasmodium berghei and the effects thereon of antimalarial drugs. Tetrahedron 39, 3543–8.CrossRefGoogle Scholar
Goodwin, L. G. (1984). Recent advances in research on filariasis; 1. Chemotherapy. Transactions of the Royal Society of Tropical Medicine and Hygiene 78 (Suppl.), 18.CrossRefGoogle Scholar
Hall, J. E., MacKenzie, N. E., Mansfield, M. J., Mccloskey, D. E. & Scott, A. I. (1988). 13C-N M R analysis of alanine metabolism by isolated perfused livers from C3HeB/FeJ mice infected with African trypanosomes. Comparative Biochemistry and Physiology 89B, 679–85.Google Scholar
Hunter, B. K., Nicholls, K. M. & Sanders, J. K. M. (1984). Formaldehyde metabolism by Escherichia coli. In vivo carbon, deuterium, and two-dimensional NMR observations of multiple detoxifying pathways. Biochemistry 23, 508–14.CrossRefGoogle Scholar
Kallinowski, F., Runkel, SL., Fortmeyer, H. P., Forster, H. & Vaupel, P. (1987). L-glutamine: a major substrate for tumor cells in vivo ? Journal of Cancer Research and Clinical Oncology 113, 209–15.CrossRefGoogle Scholar
Köhler, P. (1985). The strategies of energy conversion in helminths. Molecular and Biochemical Parasitology 17, 118.CrossRefGoogle Scholar
Körting, W. & Fairbairn, D. (1972). Anaerobic energy metabolism in Moniliformis dubius (Acanthocephala). Journal of Parasitology 58, 4550.CrossRefGoogle Scholar
Laurie, J. S. (1959). Aerobic metabolism of Moniliformis dubius (Acanthocephala). Experimental Parasitology 8, 188–97.CrossRefGoogle Scholar
MacKenzie, N. E., Baxter, R. L., Scott, A. I. & Fagerness, P. E. (1982 a). Uniformly 13C-enriched substrates as NMR probes for metabolic events in vivo. Application of double quantum coherence to a biochemical problem. Journal of the Chemical Society Chemical Communications 145–7.CrossRefGoogle Scholar
MacKenzie, N. E. & Gooley, P. R. (1988). Applications of NMR to biological systems. Medicinal Research Reviews 8, 5776.CrossRefGoogle ScholarPubMed
MacKenzie, N. E., Hall, J. E., Flynn, I. W. & Scott, A. I. (1983). 13C Nuclear magnetic resonance studies of anaerobic glycolysis in Trypanosoma brucei spp. Bioscience Reports 3, 141–51.CrossRefGoogle ScholarPubMed
MacKenzie, N. E., Hall, J. E., Seed, J. R. & Scott, A. I. (1982 b). Carbon-13 nuclear magnetic resonance studies of glucose catabolism by Trypanosoma brucei gambiense. European Journal of Biochemistry 121, 657–61.CrossRefGoogle Scholar
MacKenzie, N. E., Johnson, J., Burton, G., Wagner, G. G. & Scott, A. I. (1984). 13C NMR studies of glycolysis in intra- and extra-erythrocytic Babesia microti. Molecular and Biochemical Parasitology 13, 1320.CrossRefGoogle Scholar
Mcilwaen, H. & Bachelard, H. S. (1985). Biochemistry and the Central Nervous System. New York: Churchill Livingstone.Google Scholar
Powell, J. W., Stables, J. N. & Watt, R. A. (1986 a). An investigation of the glucose metabolism of Brugia pahangi and Dipetalomena viteae by nuclear magnetic resonance spectroscopy. Molecular and Biochemical Parasitology 18, 171–82.CrossRefGoogle ScholarPubMed
Powell, J. W., Stables, J. N., & Watt, R. A. (1986 b). An NMR study on the effect of glucose availability on carbohydrate metabolism in Dipetalomena viteae and Brugia pahangi. Molecular and Biochemical Parasitology 19, 265–71.CrossRefGoogle ScholarPubMed
Ramp, TH. & Köhler, P. (1984). Glucose and pyruvate catabolism in Litomosoides carinii. Parasitology 89, 229–44.CrossRefGoogle Scholar
Schulz-Key, H., Albiez, E. J. & Buttner, D. W. (1977). Isolation of living adult Onchocera volvulus from nodules. Tropenmedizin und Parasitologie 28, 428–40.Google Scholar
Silerud, L. O. & Shulman, R. G. (1983). Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry 22, 1087–94.CrossRefGoogle Scholar
Tielens, A. G. M. & Van Den Bergh, S. G. (1985). The (An) aerobic energy metabolism of parasitic helminths. Molecular Parasitology 8, 359–69.Google Scholar
Tuboi, S. & Kikuchi, G. (1963). Enzymic cleavage of malate to glyoxalate and acetyl coenzyme A. Journal of Biochemistry 53, 364–73.CrossRefGoogle Scholar
Ugurbil, K., Brown, T. R., Den Hollander, J. A., Glynn, P. & Shulman, R. G. (1978). High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, USA 75, 3742–6.CrossRefGoogle Scholar
Van De Waa, E. A., Foster, L. A., Deruiter, J., Williams, J. F. & Geary, T. G. (1989). Glutamine-supported motility of adult filarial parasites in vitro and the effects of glutamine antimetabolites. Experimental Parasitology (in the Press).Google Scholar
Wang, E. J. & Saz, H. J. (1974). Comparative biochemical studies of Litomosoides carinii, Dipetalomena viteae, and Brugia pahagi adults. Journal of Parasitology 60, 316–21.CrossRefGoogle Scholar
Wittich, R. M. & Walter, R. D. (1987). Onchocerca volvulus: Partial glucose catabolism via fumarate and succinate. Experimental Parasitology 64, 517–18.CrossRefGoogle ScholarPubMed
14
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Comparison of glycolysis and glutaminolysis in Onchocerca volvulus and Brugia pahangi by 13C nuclear magnetic resonance spectroscopy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Comparison of glycolysis and glutaminolysis in Onchocerca volvulus and Brugia pahangi by 13C nuclear magnetic resonance spectroscopy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Comparison of glycolysis and glutaminolysis in Onchocerca volvulus and Brugia pahangi by 13C nuclear magnetic resonance spectroscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *