Skip to main content Accessibility help
×
Home
Hostname: page-component-65d66dc8c9-nxpqk Total loading time: 0.21 Render date: 2021-09-29T03:10:57.134Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Characterization of major sperm protein genes and their expression in Oesophagostomum dentatum (Nematoda: Strongylida)

Published online by Cambridge University Press:  14 September 2004

P. A. COTTEE
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
A. J. NISBET
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
P. R. BOAG
Affiliation:
Joslin Diabetes Centre, Harvard Medical School, Boston, USA
M. LARSEN
Affiliation:
Danish Centre of Experimental Parasitology, Royal Veterinary and Agricultural University, DK-1870 Frederikserg C, Denmark
R. B. GASSER
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia

Abstract

Major sperm protein (msp) genes were isolated from complementary (cDNA) and genomic DNA libraries prepared from the parasitic nematode, Oesophagostomum dentatum, characterized at the nucleotide and amino acid (aa) levels, and their expression was investigated. Three different msp cDNA and 2 genomic sequences were determinedThe nucleotide sequences reported in this article have been deposited in the EMBL, GenBank and DDJB databases under the Accession numbers AJ627869–AJ627873., each with an open reading frame (ORF) of 381 nucleotides. Nucleotide variation was detected at 30 positions in the ORF among all 5 sequences. Conceptual translation of the full-length msp sequences inferred 4 different MSPs each of 126 aa. These predicted MSPs differed at aa positions 15 (serine<->threonine), 101 (alanine<->glycine), 103 (glutamine<->leucine) and 126 (proline<->leucine). Southern blot analysis of O. dentatum genomic DNA, digested separately with various restriction endonucleases, displayed multiple (n=7–13) bands for each enzyme, providing support for a multigene family. Also, at the genomic level, sequence tracts consistent with a ‘substitute’ TATA box sequence motif were identified within a region (−1 to −123 nt) preceding the 2 msp genes. In contrast to other species of nematode investigated to date, no GATA transcription factor binding motif was detected immediately upstream of the msp coding region. Real-time PCR analysis demonstrated that msp mRNA was expressed exclusively in the males of both fourth-stage larvae (L4s) and adults of O. dentatum (raised in pigs after intragastric inoculation). The magnitude of expression in male O. dentatum raised in pigs in the presence of female worms was the same as in males in the absence of females. Comparative analyses showed aa sequence conservation among MSPs from various nematodes, suggesting similar functional roles for these proteins.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASH, L. R. & ORIHEL, T. C. (1987). Parasites: A Guide to Laboratory Procedures and Identification.
BENNETT, K. L. & WARD, S. (1986). Neither a germ line-specific nor several somatically expressed genes are lost or rearranged during embryonic chromatin diminution in the nematode Ascaris lumbricoides var. suum. Developmental Biology 118, 141147.CrossRefGoogle Scholar
BLAXTER, M. L., DE LAY, P., GAREY, J. R., LIU, L. X., SCHELDEMAN, P., VIERSTRAETE, A., VANFLETEREN, J. R., MACKEY, L. Y., DORRIS, M., FRISSE, L. M., VIDA, J. T. & THOMAS, K. W. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, London 392, 7175.CrossRefGoogle Scholar
BLUMENTHAL, T. (1998). Gene clusters and polycistronic transcription in eukaryotes. BioEssays 20, 480487.3.0.CO;2-Q>CrossRefGoogle Scholar
BOAG, P. R., NEWTON, S. E., HANSEN, N., CHRISTENSEN, C. M., NANSEN, P. & GASSER, R. B. (2000). Isolation and characterization of sex-specific transcripts from Oesophagostomum dentatum by RNA arbitrarily-primed PCR. Molecular and Biochemical Parasitology 108, 217224.CrossRefGoogle Scholar
BOAG, P. R., NEWTON, S. E. & GASSER, R. B. (2001). Molecular aspects of sexual development and reproduction in nematodes and schistosomes. Advances in Parasitology 50, 153198.CrossRefGoogle Scholar
BOAG, P. R., RANGANATHAN, S., NEWTON, S. E. & GASSER, R. B. (2002). A male-specific (cysteine-rich) protein of Oesophagostomum dentatum (Strongylida) with structural characteristics of a serine protease inhibitor containing two trypsin inhibitor-like domains. Parasitology 125, 445455.CrossRefGoogle Scholar
BOAG, P. R., GASSER, R. B., NISBET, A. J. & NEWTON, S. E. (2003 a). Genomics of reproduction in parasitic nematodes – fundamental and biotechnological implications. Biotechnology Advances 21, 103108.Google Scholar
BOAG, P. R., REN, P., NEWTON, S. E. & GASSER, R. B. (2003 b). Molecular characterisation of a male-specific serine/threonine phosphatase from Oesophagostomum dentatum (Nematoda: Strongylida), and functional characterization of homologues in Caenorhabditis elegans. International Journal for Parasitology 33, 313325.Google Scholar
BOTTINO, D., MOGILNER, A., ROBERTS, T., STEWART, M. & OSTER, G. (2002). How nematode sperm crawl. Journal of Cell Science 115, 367384.Google Scholar
BURKE, D. J. & WARD, S. (1983). Identification of a large multigene family encoding the major sperm protein of Caenorhabditis elegans. Journal of Molecular Biology 171, 129.CrossRefGoogle Scholar
BULLOCK, T. L., PARTHASARATHY, G., KING, K. L., KENT, H. M., ROBERTS, T. M. & STEWART, M. (1996). New crystal forms of the motile major sperm protein (MSP) of Ascaris suum. Journal of Structural Biology 116, 432437.CrossRefGoogle Scholar
BUTTERY, S. M., EKMAN, G. C., SEAVY, M., STEWART, M. & ROBERTS, T. M. (2003). Dissection of the Ascaris sperm motility machinery identifies key proteins involved in major sperm protein-based amoeboid locomotion. Molecular Biology of the Cell 14, 50825088.CrossRefGoogle Scholar
CHRISTENSEN, C. M. (1997). The effect of three distinct sex ratios at two Oesophagostomum dentatum worm population densities. Journal of Parasitology 83, 636640.CrossRefGoogle Scholar
CHRISTENSEN, C. M., BARNES, E. H., NANSEN, P. & GRONDAHL-NIELSEN, C. (1996 a). Growth and fecundity of Oesophagostomum dentatum in high-level infections and after transplantation in naïve pigs. Parasitology Research 82, 364368.Google Scholar
CHRISTENSEN, C. M., GRØNDAHL-NIELSEN, C. & NANSEN, P. (1996 b). Non-surgical transplantation of Oesophagostomum dentatum to recipient pigs via rectal intubation. Veterinary Parasitology 65, 139145.Google Scholar
ERASMUS, D. A. (1973). A comparative study of the reproductive system of mature, immature and ‘unisexual’ female Schistosoma mansoni. Parasitology 67, 165183.CrossRefGoogle Scholar
GASSER, R. B., CHILTON, N. B., HOSTE, H. & BEVERIDGE, I. (1993). Rapid sequencing of rDNA from single worms and eggs of parasitic helminthes. Nucleic Acids Research 21, 25252526.CrossRefGoogle Scholar
HAUPT, W. (1966). Ein Beitrag zur Morphologie der Knötchenwuermer des Hausschweines, ihrer Eier sowie der dritten invasionstüchtigen Larvenstadien. Archiv für Experimentelle Veterinärmedizin 20, 701711.Google Scholar
HOJAS, R. M. & POST, R. J. (2000). Regional genetic variation in the major sperm protein genes of Onchocerca volvulus and Mansonella ozzardi (Nematoda: Filarioidea). International Journal for Parasitology 30, 14591465.CrossRefGoogle Scholar
ITALIANO, J. E. Jr., STEWART, M. & ROBERTS, T. M. (2001). How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility. International Reviews of Cytology 202, 134.CrossRefGoogle Scholar
KIM, S. K., LUND, J., KIRALY, M., DUKE, K., JIANG, M., STUART, J. M., EIZINGER, A., WYLIE, B. N. & DAVIDSON, G. S. (2001). A gene expression map for Caenorhabditis elegans. Science 293, 20872092.CrossRefGoogle Scholar
KING, K. L., STEWART, M., ROBERTS, T. M. & SEAVY, M. (1992). Structure and macromolecular assembly of two isoforms of the major sperm protein (MSP) from the amoeboid sperm of the nematode Ascaris suum. Journal of Cell Science 101, 847857.Google Scholar
KING, K. L., ESSIG, J., ROBERTS, T. M. & MOERLAND, T. S. (1994 a). Regulation of the Ascaris major sperm protein (MSP) cytoskeleton by intracellular pH. Cell Motility and Cytoskeleton 27, 193205.Google Scholar
KING, K. L., STEWART, M. & ROBERTS, T. M. (1994 b). Supramolecular assemblies of the Ascaris suum major sperm protein (MSP) associated with amoeboid sperm mobility. Journal of Cell Science 107, 29412949.Google Scholar
KLASS, M. & HIRSCH, D. (1981). Sperm isolation and biochemical analysis of the major sperm protein from Caenorhabditis elegans. Developmental Biology 84, 299312.CrossRefGoogle Scholar
KLASS, M., AMMONS, D. & WARD, S. (1988). Conservation in the 5′ flanking sequences of transcribed members of the Caenorhabditis elegans major sperm protein gene family. Journal of Molecular Biology 199, 1522.CrossRefGoogle Scholar
KUNZ, W. (2001). Schistosome male-female interaction: induction of germ-cell differentiation. Trends in Parasitology 17, 227231.CrossRefGoogle Scholar
KUWABARA, P. E. (1996). Interspecies comparison reveals evolution of control regions in the nematode sex-determining gene tra-2. Genetics 144, 597607.Google Scholar
KUWABARA, P. E. (2003). The multifacetated C. elegans major sperm protein: an ephrin signalling antagonist in oocyte maturation. Genes and Development 17, 155161.Google Scholar
LERCHER, M. J., BLUMENTHAL, T. & HURST, L. D. (2003). Coexpression of neighbouring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. Genome Research 13, 238243.CrossRefGoogle Scholar
L'HERNAULT, S. W. (1997). Spermatogenesis. In C. elegans II (ed. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.), pp. 27129. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
MacMORRIS, M., BROVERMAN, S., GREENSPOON, S., LEA, K., MADEJ, C., BLUMENTHAL, T. & SPIETH, J. (1992). Regulation of vitellogenin gene expression in transgenic Caenorhabditis elegans: short sequences required for activation of the vit-2 promoter. Molecular and Cellular Biology 12, 16521662.CrossRefGoogle Scholar
MacMORRIS, M., SPIETH, J., MADEJ, C., LEA, K. & BLUMENTHAL, T. (1994). Analysis of the VPE sequences in the Caenorhabditis elegans vit-2 promoter with extrachromosomal tandem array-containing transgenic strains. Molecular and Cellular Biology 14, 484491.CrossRefGoogle Scholar
MIAO, L., VANDERLINDE, O., STEWART, M. & ROBERTS, T. M. (2003). Retraction in amoeboid cell motility powered by cytoskeletal dynamics. Science 302, 14051407.CrossRefGoogle Scholar
MILLER, M. A., NGUYEN, V. Q., LEE, M., KOSINSKI, M., SCHEDL, T., CAPRIOLI, R. M. & GREENSTEIN, D. (2001). A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291, 21442147.CrossRefGoogle Scholar
MILLER, M. A., RUEST, P. J., KOSINSKI, M., HANKS, S. K. & GREENSTEIN, D. (2003). An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. Genes and Development 17, 187200.CrossRefGoogle Scholar
MUHLRAD, P. J. & WARD, S. (2002). Spermiogenesis inititation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Genetics 161, 143155.Google Scholar
NELSON, G. A. & WARD, S. (1981). Amoeboid motility and actin in Ascaris lumbricoides sperm. Experimental Cell Research 131, 149160.CrossRefGoogle Scholar
NOVITISKI, C. E., BROWN, S., CHEN, R., CORNER, A. S., ATKINSON, H. J. & McPHERSON, M. J. (1993). Major sperm protein genes from Globodera rostochiensis. Journal of Nematology 25, 548554.Google Scholar
POPIEL, I., CIOLI, D. & ERASMUS, D. A. (1984). The morphology and reproductive status of female Schistosoma mansoni following separation from male worms. International Journal for Parasitology 14, 183190.CrossRefGoogle Scholar
REINKE, V., SMITH, H. E., NANCE, J., WANG, J., VAN DOREN, C., BEGLEY, R., JONES, S. J., DAVIS, E. B., SCHERER, S., WARD, S. & KIM, S. K. (2000). A global profile of germline gene expression in C. elegans. Molecular Cell 6, 605616.CrossRefGoogle Scholar
ROBERTS, T. M. & STEWART, M. (2000). Acting like actin: the dynamics of the nematode Major Sperm Protein (MSP) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. The Journal of Cell Biology 149, 712.CrossRefGoogle Scholar
SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
SCHNIEDER, T. (1993). The diagonostic antigen encoded by a gene fragment Dv3-14: a major sperm protein of Dictyocaulus viviparus. International Journal for Parasitology 23, 383389.CrossRefGoogle Scholar
SCOTT, A., DINMAN, J., SUSSMAN, D. J. & WARD, S. (1989 a). Major sperm protein and actin genes in free-living and parasitic nematodes. Parasitology 98, 471478.Google Scholar
SCOTT, A. L., DINMAN, J., SUSSMAN, D. J., YENBUTR, P. & WARD, S. (1989 b). Major sperm protein genes from Onchocerca volvulus. Molecular and Biochemical Parasitology 36, 119126.Google Scholar
SETTERQUIST, R. R. & FOX, G. E. (1995). Dicylocaulus viviparus: nucleotide sequence of Dv3-14. International Journal for Parasitology 25, 137138.CrossRefGoogle Scholar
SLOTVED, H. C., BARNES, E. H., BJORN, H., CHRISTENSEN, C. M., ERIKSEN, L., ROEPSTORFF, A. & NANSEN, P. (1996). Recovery of Oesophagostomum dentatum from pigs by isolation of parasites migrating from large intestinal contents embedded in agar-gel. Veterinary Parasitology 63, 237245.CrossRefGoogle Scholar
SMALE, S. T. (1997). Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochimica et Biophysica Acta 1351, 7388.CrossRefGoogle Scholar
SMITH, H. E. & WARD, S. (1998). Identification of protein–protein interactions of the Major Sperm Protein (MSP) in Caenorhabditis elegans. Journal of Molecular Biology 279, 605619.CrossRefGoogle Scholar
TALVIK, H., CHRISTENSEN, C. M., JOACHIM, A., ROEPSTORFF, A., BJØRN, H. & NANSEN, P. (1997). Prepatent periods of different Oesophagostomum spp. isolates in experimentally infected pigs. Parasitology Research 83, 563568.Google Scholar
THE C. ELEGANS SEQUENCING CONSORTIUM (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 20122018.
THERIOT, J. A. (1996). Worm sperm and advances in cell locomotion. Cell 84, 14.CrossRefGoogle Scholar
THOMPSON, J. D., HIGGINS, D. G. & GIBSON, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
WARD, S. & KLASS, M. (1982). The location of the major protein in Caenorhabditis elegans sperm and spermatocytes. Developmental Biology 92, 203208.CrossRefGoogle Scholar
WARD, S., BURKE, D. J., SULSTON, J. E., COULSON, A. R., ALBERTSON, D. G., AMMONS, D., KLASS, M. & HOGAN, E. (1988). Genomic organisation of major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans. Journal of Molecular Biology 199, 113.Google Scholar
23
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of major sperm protein genes and their expression in Oesophagostomum dentatum (Nematoda: Strongylida)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterization of major sperm protein genes and their expression in Oesophagostomum dentatum (Nematoda: Strongylida)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterization of major sperm protein genes and their expression in Oesophagostomum dentatum (Nematoda: Strongylida)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *