Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T20:27:02.291Z Has data issue: false hasContentIssue false

Antagonistic activity of the fungus Pochonia chlamydosporia on mature and immature Toxocara canis eggs

Published online by Cambridge University Press:  23 March 2012

A. S. MACIEL*
Affiliation:
Laboratório de Controle Biológico de Nematóides, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, 36570-000, Brazil
L. G. FREITAS
Affiliation:
Laboratório de Controle Biológico de Nematóides, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, 36570-000, Brazil
L. D. FIGUEIREDO
Affiliation:
Laboratório de Controle Biológico de Nematóides, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, 36570-000, Brazil
A. K. CAMPOS
Affiliation:
Instituto de Ciências da Saúde, Universidade Federal do Mato Grosso, Mato Grosso, 78550-000, Brazil
I. N. K. MELLO
Affiliation:
Laboratório de Parasitologia, Departamento de Veterinária, Universidade Federal de Viçosa, Minas Gerais, 36570-000, Brazil
*
*Corresponding author: Laboratório de Controle Biológico de Nematóides, Bioagro, Universidade Federal de Viçosa, Minas Gerais, 36570-000, Brazil. Tel: +55 31 38992925. E-mail: ale_spalenza@yahoo.com.br

Summary

In vitro tests were performed to evaluate the ability of 6 isolates of the nematophagous fungus Pochonia chlamydosporia to infect immature and mature Toxocara canis eggs on cellulose dialysis membrane. There was a direct relationship between the number of eggs colonized and the increase in the days of interaction, as well as between the number of eggs colonized and the increase in the concentration of chlamydospores (P<0·05). Immature eggs were more susceptible to infection than mature eggs. The isolate Pc-04 was the most efficient egg parasite until the 7th day, and showed no difference in capacity to infect mature and immature eggs in comparison to Pc-07 at 14 and 21 days of interaction, respectively. Isolate Pc-04 was the most infective on the two evolutionary phases of the eggs at most concentrations, but its ability to infect immature eggs did not differ from that presented by the isolates Pc-07 and Pc-10 at the inoculum level of 5000 chlamydospores. Colonization of infective larvae inside or outside the egg was observed in treatments with the isolates Pc-03, Pc-04, Pc-07 and Pc-10. The isolate Pc-04 of P. chlamydosporia has great biological capacity to destroy immature and mature T. canis eggs in laboratory conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrantes, I., Santos, S. A., Bourne, J., Ciancio, A., Lopez-Llorca, L., Kerry, B., Mota, M., Tzortzakakis, E. and Verdejo-Lucas, S. (2002). The use of Verticillium chlamydosporium as a biological control agent. In A Manual for Research on Verticillium chlamydosporium, a Potential Biological Control Agent for Root-Knot Nematodes (ed. Kerry, B. R. and Bourne, J. M.), pp. 112. IOBC/WPRS, Gent, Belgium.Google Scholar
Alcântara-Neves, N. M., Santos, A. B., Mendonça, L. R., Figueiredo, C. A. V. and Pontes-de-Carvalho, L. (2008). An improved method to obtain antigen-excreting Toxocara canis larvae. Experimental Parasitology 119, 349351.CrossRefGoogle ScholarPubMed
Alonso, J. M., Stein, M., Chamorro, M. C. and Bojanich, M. V. (2001). Contamination of soils with eggs of Toxocara in a subtropical city in Argentina. Journal of Helminthology 75, 165168.Google Scholar
Aragane, K., Akao, N., Matsuyama, T., Sugita, M., Natsuaki, M. and Kitada, O. (1999). Fever, cough, and nodules on ankles. Lancet 354, 1872.CrossRefGoogle ScholarPubMed
Araújo, J. V., Braga, F. R., Milani, J. A., Silva, A. S. and Tavela, A. O. (2008). In vitro evaluation of the effect of the nematophagous fungi Duddingtonia flagrans, Monacrosporium sinense and Pochonia chlamydosporia on Ascaris suum eggs. Parasitology Research 102, 787790.CrossRefGoogle ScholarPubMed
Avcioglu, H. and Burgu, A. (2008). Seasonal prevalence of Toxocara ova in soil samples from public parks in Ankara, Turkey. Vector borne and Zoonotic Diseases 8, 345350.CrossRefGoogle ScholarPubMed
Aycicek, H., Yarsan, E., Sarimehmetoglu, H. O., Tanyuksel, M., Girginkardesler, N. and Ozyurt, M. (2001). Efficacy of some disinfectants on embryonated eggs of Toxocara canis. Turkish Journal of Medical Sciences 31, 3539.Google Scholar
Basualdo, J. A., Ciarmela, M. L., Sarmiento, P. L. and Minvielle, M. C. (2000). Biological activity of Paecilomyces lilacinus genus against Toxocara canis eggs. Parasitology Research 86, 854859.CrossRefGoogle ScholarPubMed
Blackwell, V., Ahmed, K., O'Docherty, C. and Hay, R. J. (2000). Cutaneous hyalohyphomycosis caused by Paecilomyces lilacinus in a renal transplant patient. British Journal of Dermatology 143, 873875.CrossRefGoogle Scholar
Bouchet, F., Araújo, A., Harter, S., Chaves, S. M., Duarte, A. N., Monnier, J. L. and Ferreira, L. F. (2003). Toxocara canis (Werner, 1782) eggs in the Pleistocene site of Menez-Dregan, France (300,000–500,000 years before present). Memórias do Instituto Oswaldo Cruz 98, 137139.CrossRefGoogle ScholarPubMed
Bowman, D. D., Mika-Grieve, M. and Grieve, R. B. (1987). Circulating excretory-secretory antigen levels and specific antibody responses in mice infected with Toxocara canis. The American Journal of Tropical Medicine and Hygiene 36, 7582.CrossRefGoogle ScholarPubMed
Brunaská, M., Dubinsky, P. and Reiterova, K. (1995). Toxocara canis: ultrastructural aspects of larval moulting in the maturing eggs. International Journal for Parasitology 25, 683690.CrossRefGoogle ScholarPubMed
Carey, J., D'Amico, R., Sutton, D. A. and Rinaldi, M. G. (2003). Paecilomyces lilacinus vaginitis in an immunocompetent patient. Emerging Infectious Diseases 9, 11551158.CrossRefGoogle Scholar
Carvalho, R. O., Araújo, J. V., Braga, F. R., Araújo, J. M. and Alves, C. D. (2010). Ovicidal activity of Pochonia chlamydosporia and Paecilomyces lilacinus on Toxocara canis eggs. Veterinary Parasitology 169, 123127.CrossRefGoogle ScholarPubMed
Chen, S. and Dickson, D. W. (2004). Biological control of nematodes by fungal antagonists. In Nematology, Advances and Perspectives, Nematode Management and Utilization (ed. Chen, Z., Chen, S. and Dickinson, D. W.), pp. 9791039. CABI Publishing, Cambridge, UK.CrossRefGoogle Scholar
Coelho, L. M. P. S., Dini, C. Y., Milman, M. H. S. A. and Oliveira, S. M. (2001). Toxocara spp. eggs in public squares of Sorocaba, São Paulo State, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 43, 189191.CrossRefGoogle ScholarPubMed
Daryani, A., Sharif, M., Amouei, A. and Gholami, S. (2009). Prevalence of Toxocara canis in stray dogs in Northern Iran. Pakistan Journal of Biological Sciences 12, 1031–1035.CrossRefGoogle ScholarPubMed
Despommier, D. (2003). Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clinical Microbiology Reviews 16, 265272.CrossRefGoogle ScholarPubMed
Dubinsky, P., Havasiova-Reiterowa, K., Petko, B., Hovorka, I. and Tomasovicova, O. (1995) Role of small mammals in the epidemiology of toxocariasis. Parasitology 110, 187193.CrossRefGoogle ScholarPubMed
Fenoy, R., Del Hoyo, C. and Guillen-Llera, J. (1987). Estudio comparativo de la influencia de la luz en el embrionamento experimental de los huevos de Toxocara canis y Toxocara leonine. Revista Iberolatinoamericana de Parasitología 47, 173177.Google Scholar
Ferré, P. and Dorchies, P. (2000). Prevalence of Toxocara spp. eggs in sandpits of eight public parks in Toulouse (SW France). Revue de Médecine Vétérinaire 151, 501506.Google Scholar
Foley, J. E., Norris, C. R. and Jang, S. S. (2002). Paecilomycosis in dogs and horses and a review of the literature. Journal of Veterinary Internal Medicine 16, 238243.CrossRefGoogle Scholar
Genchi, C. and Traldi, G. (1994). Infezioni zoonosiche da Toxocara canis: stato dell'arte. Journal of Medical Microbiology 9, 457461.Google Scholar
Giacometti, A., Cirioni, O., Fortuna, M., Osimani, P., Antonicelli, L., Del Prete, M. S., Riva, A., D'Errico, M. M., Petrelli, E. and Scalise, G. (2000). Environmental and serological evidence for the presence of toxocariasis in the urban area of Ancona, Italy. European Journal of Epidemiology 16, 10231026.CrossRefGoogle ScholarPubMed
Glickman, L. (1993). The epidemiology of human toxocariasis. In Toxocara and Toxocariasis, Clinical, Epidemiological and Molecular Perspectives (ed. Lewis, J. and Maizels, R.), pp. 310. Institute of Biology and the British Society for Parasitology, London, UK.Google Scholar
Huang, X., Zhao, N. and Zhang, K. (2004). Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Research in Microbiology 155, 811816.CrossRefGoogle ScholarPubMed
Jansson, H. B. and Lopez-Llorca, L. V. (2004). Control of nematodes by fungi. In Fungal Biotechnology in Agriculture, Food, and Environmental Applications (ed. Arora, D. K.), pp. 205215. Marcel Dekker, New York, USA.Google Scholar
Jin, Z., Akao, N. and Ohta, N. (2008). Prolactin evokes lactational transmission of larvae in mice infected with Toxocara canis. Parasitology International 57, 495498.CrossRefGoogle ScholarPubMed
Kerry, B. R. (2001). Exploitation of nematophagous fungal Verticillium chlamydosporium Goddard for the biological control of root-knot nematodes (Meloidogyne spp.). In Fungi as Biocontrol Agents: Progress, Problems and Potential (ed. Butt, T. M., Jackson, C. and Magan, N.), pp. 155167. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Kiewnick, S. and Sikora, R. A. (2006). Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological Control 38, 179187.CrossRefGoogle Scholar
Leij, F. A. A. M. and Kerry, B. R. (1991). The nematophagus fungus Verticillium chlamydosporium Goddard, as a potencial biological control agent for Meloidogyne arenaria (Neal) Chitwood. Revue de Nématologie 14, 157164.Google Scholar
Levine, N. D. (1968). Nematode Parasites of Domestic Animals and Man. Burgess, Minneapolis, Minnesota, USA.Google Scholar
Lloyd, S. (1998). Toxocarosis. In Zoonoses (ed. Palmer, S. R., Soulsby, E. J. L. and Simpson, D. I. H.), pp. 841854. Oxford Medical Publications, Oxford, UK.CrossRefGoogle Scholar
Lopez-Llorca, L. V., Maciá-Vicente, J. G. and Jansson, H. B. (2008). Mode of action and interactions of nematophagous fungi. In Integrated Management and Biocontrol of Vegetable and Grain Crop Nematodes (ed. Ciancio, A. and Mukerji, K. G.), pp. 5176. Springer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Lysek, H. and Krajci, D. (1987). Penetration of ovicidal fungus Verticillium chlamydosporium through the Ascaris lumbricoides egg-shells. Folia Parasitologica 34, 5760.Google ScholarPubMed
Lysek, H., Malinsky, J. and Janisch, R. (1985). Ultrastructure of eggs of Ascaris lumbricoides linnaeus, 1758 I. Egg-shells. Folia Parasitologica 32, 381384.Google ScholarPubMed
Lysek, H. and Sterba, J. (1991). Colonization of Ascaris lumbricoides eggs by the fungus Verticillium chlamydosporium Goddard. Folia Parasitologica 38, 255259.Google ScholarPubMed
Ming-Shun, W., Chien-Wei, L., Wen-Yun, D., Ting-Chang, K., Kua-Eyre, S., Yun-Ho, L., Chun-Chao, C. and Chia-Kwung, F. (2008). Enhanced expression of transforming growth factor-beta 1 in inflammatory cells, alpha-smooth muscle actin in stellate cells, and collagen accumulation in experimental granulomatous hepatitis caused by Toxocara canis in mice. Acta Tropica 105, 260268.Google Scholar
Mizgajska-Wiktor, H. and Uga, S. (2006). Exposure and environmental contamination. In Toxocara: the Enigmatic Parasite (ed. Holland, C. V. and Smith, H. V.), pp. 211227. CABI International, Wallingford, UK.CrossRefGoogle Scholar
Monfort, E., Lopez-Llorca, L. V., Jansson, H. B. and Salinas, J. (2006). In vitro soil receptivity assays to egg-parasitic nematophagous fungi. Mycological Progress 5, 1823.CrossRefGoogle Scholar
Morgan-Jones, G., White, J. F. and Rodrígues-Kábana, R. (1983). Phytonematode pathology: Ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica 13, 245260.Google Scholar
Morimatsu, Y., Akao, N., Akiyoshi, H., Kawazu, T., Okabe, Y. and Aizawa, H. (2006). Case reports: a familial case of Visceral Larva Migrans after ingestion of raw chicken livers: appearance of specific antibody in bronchoalveolar lavage fluid of the patients. American Journal of Tropical Medicine and Hygiene 75, 303306.CrossRefGoogle ScholarPubMed
Nordbring-Hertz, B. (1983). Dialysis membrane technique for studying microbial interaction. Applied and Environmental Microbiology 45, 290293.CrossRefGoogle ScholarPubMed
Nordbring-Hertz, B., Jansson, H. B. and Tunlid, A. (2006). Nematophagous Fungi. Encyclopedia of Life Sciences. John Wiley & Sons, Chichester, UK.Google Scholar
O'Lorcain, P. (1994 a). Epidemiology of Toxocara spp. in stray dogs and cats in Dublin, Ireland. Journal of Helminthology 68, 331336.CrossRefGoogle ScholarPubMed
O'Lorcain, P. (1994 b). Prevalence of Toxocara canis ova in public playgrounds in the Dublin area of Ireland. Journal of Helmintology 68, 237241.CrossRefGoogle ScholarPubMed
Overgaauw, P. A. M. (1997 a). Aspects of Toxocara epidemicology: toxocariasis in dogs and cats. Critical Review in Microbiology 23, 233251.CrossRefGoogle Scholar
Overgaauw, P. A. M. (1997 b). Aspects of Toxocara epidemiology: human toxocarosis. Critical Review in Microbiology 23, 215231.CrossRefGoogle ScholarPubMed
Overgaauw, P. A. M. and Knapen, F. (2008). Toxocarosis, an important zoonosis. European Journal of Companion Animal Practice 18, 259266.Google Scholar
Parsons, J. C. (1987). Ascarid infections of cats and dogs. Veterinary Clinics of North America, Small Animal Practice 17, 13071339.CrossRefGoogle ScholarPubMed
Pawloski, D. R., Brunker, J. D., Singh, K. and Sutton, D. A. (2010). Pulmonary Paecilomyces lilacinus infection in a cat. Journal of the American Animal Hospital Association 46, 197202.CrossRefGoogle ScholarPubMed
Pecinali, N. R., Gomes, R. N., Amendoeira, F. C., Pereira Bastos, A. C. M., Martins, M. J. Q. A., Pegado, C. S., Pereira Bastos, O. M., Bozza, P. T. and Castro Faria Neto, H. C. (2005). Influence of murine Toxocara canis infection on plasma and bronchoalveolar lavage fluid eosinophil numbers and its correlation with cytokine levels. Veterinary Parasitology 134, 121130.CrossRefGoogle ScholarPubMed
Pinelli, E., Brandes, S., Dormans, J., Fonville, M., Hamilton, C. M. and Van Der Giessen, J. (2007). Toxocara canis: Effect of inoculum size on pulmonary pathology and cytokine expression in BALB/c mice. Experimental Parasitology 115, 7682.CrossRefGoogle ScholarPubMed
Ruiz de Ybáñez, M. R., Garijo, M. M. and Alonso, F. D. (2001). Prevalence and viability of eggs of Toxocara spp. And Toxascaris leonina in public parks in eastern Spain Journal of Helminthology 75, 169173.Google ScholarPubMed
Salem, G. and Schantz, P. (1992). Toxocaral visceral larva migrans after ingestion of raw lamb liver. Clinical Infectious Diseases 15, 743744.CrossRefGoogle ScholarPubMed
Sayre, R. M. and Walter, D. E. (1991). Factors affecting the efficacy of natural enemies of nematodes. Annual Review of Phytopathology 29, 149166.CrossRefGoogle Scholar
Segers, R., Butt, T. M., Keen, J. N., Kerry, B. R., Beckett, A. and Peberdy, J. F. (1996). The role of the proteinase VcP1 produced by the nematophagous fungus Verticillium chlamydosporium in the infection process of nematode eggs. Mycological Research 100, 421428.CrossRefGoogle Scholar
Shimizu, T. (1993). Prevalence of Toxocara eggs in sandpits in Tokushima city and its outskirts. The Journal of Veterinary Medical Science 55, 807811.CrossRefGoogle ScholarPubMed
Smith, D. and Onions, A. H. S. (1983). The Preservation and Maintenance of Living Fungi. Commonwealth Mycological Institute, Kew, UK.Google Scholar
Snow, K. R., Ball, S. J. and Bewick, J. A. (1987). Prevalence of Toxocara species eggs in the soil of five east London parks. Veterinary Record 120, 6667.CrossRefGoogle ScholarPubMed
Statsoft (2004). Statistica for Windows. Computer Program Manual. Version 7.0. Statsoft. Tulsa. http://www.statsoft.com.Google Scholar
Sturchler, D., Weiss, N. and Gassner, M. (1990). Transmission of toxocariasis. Journal Infectious Diseases 162, 571.CrossRefGoogle ScholarPubMed
Taylor, M. R. H. and Holland, C. V. (2001). Toxocariasis. In Principles and Practice of Clinical Parasitology (ed. Gillespie, S. H. and Pearson, R. D.), pp. 501519. John Wiley & Sons, New York, USA.CrossRefGoogle Scholar
Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J. and Jansson, H. B. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology 35, 6768.CrossRefGoogle ScholarPubMed
Watthanakulpanich, D., Smith, H. V., Hobbs, G., Whalley, A. J. and Billington, D. (2008). Application of Toxocara canis excretory-secretory antigens and IgG subclass antibodies (IgG1–4) in serodiagnostic assays of human toxocariasis. Acta Tropica 106, 9095.CrossRefGoogle ScholarPubMed
Zare, R., Gams, W. and Evans, H. C. (2001). A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73, 5186.CrossRefGoogle Scholar
Zhang, C., Wu, X. and Cai, X. (2009). Effect of chitinases produced by Pochonia chlamydosporia on egg-hatching of Meloidogyne incognita. Scientia Agricultura Sinica 42, 35093515.Google Scholar