Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-12T12:33:03.721Z Has data issue: false hasContentIssue false

Accuracy of real-time polymerase chain reaction to detect Schistosoma mansoni – infected individuals from an endemic area with low parasite loads

Published online by Cambridge University Press:  02 June 2020

Fernanda do Carmo Magalhães*
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
Samira Diniz Resende
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
Carolina Senra
Affiliation:
Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), 30190-002, Belo Horizonte, MG, Brazil
Carlos Graeff-Teixeira
Affiliation:
Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
Martin Johannes Enk
Affiliation:
Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Ministério da Saúde, Belém, Brazil
Paulo Marcos Zech Coelho
Affiliation:
Diagnóstico e Terapia de Doenças Infecciosas e Oncológicas, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), 30190-002, Belo Horizonte, MG, Brazil
Edward Oliveira
Affiliation:
Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), 30190-002, Belo Horizonte, MG, Brazil
Deborah Aparecida Negrão-Corrêa
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
Stefan Michael Geiger
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
Mariângela Carneiro
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
*
Author for correspondence: Fernanda do Carmo Magalhães, E-mail: nandademagalhaes@yahoo.com.br

Abstract

Due to the efforts to control schistosomiasis transmission in tropical countries, a large proportion of individuals from endemic areas present low parasite loads, which hinders diagnosis of intestinal schistosomiasis by the Kato-Katz (KK) method. Therefore, the development of more sensitive diagnostic methods is essential for efficient control measures. The aim was to evaluate the accuracy of a real-time polymerase chain reaction (RT-PCR) to detect Schistosoma mansoni DNA in fecal samples of individuals with low parasite loads. A cross-sectional population-based study was conducted in a rural community (n = 257) in Brazil. POC-CCA® was performed in urine and feces were used for RT-PCR. In addition, fecal exams were completed by 18 KK slides, saline gradient and Helmintex techniques. The combined results of the three parasitological tests detected schistosome eggs in 118 participants (45.9%) and composed the consolidated reference standard (CRS). By RT-PCR, 117 out of 215 tested samples were positive, showing 91.4% sensitivity, 80.2% specificity and good concordance with the CRS (kappa = 0.71). RT-PCR identified 86.9% of the individuals eliminating less than 12 eggs/g of feces, demonstrating much better performance than POC-CCA® (50.8%). Our results showed that RT-PCR is a valuable alternative for the diagnosis of intestinal schistosomiasis in individuals with very low parasite loads.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allam, AF, Kader, O, Zaki, A, Shehab, AY and Farag, HF (2009) Assessing the marginal error in diagnosis and cure of Schistosoma mansoni in areas of low endemicity using Percoll and PCR techniques. Tropical Medicine and International Health 14, 316321.10.1111/j.1365-3156.2009.02225.xCrossRefGoogle ScholarPubMed
Amaral, RS, Tauil, PL, Lima, DD and Engels, D (2006) An analysis of the impact of the Schistosomiasis Control Programme in Brazil. Memórias do Instituto Oswaldo Cruz 101, 7985.10.1590/S0074-02762006000900012CrossRefGoogle ScholarPubMed
Bergquist, R, Johansen, MV and Utzinger, J (2009) Diagnostic dilemmas in helminthology: what tools to use and when? Trends in Parasitology 25, 151156.10.1016/j.pt.2009.01.004CrossRefGoogle ScholarPubMed
Bergquist, R, Zhou, XN, Rollinson, D, Reinhard-Rupp, J and Klohe, K (2017) Elimination of schistosomiasis: the tools required. Infectious Diseases of Poverty 6, 158.10.1186/s40249-017-0370-7CrossRefGoogle ScholarPubMed
Berhe, N, Medhin, G, Erko, B, Smith, T, Gedamu, S, Bereded, D, Moore, R, Habte, E, Redda, A, Gebre-Michael, T and Gundersen, SG (2004) Variations in helminth faecal egg counts in Kato–Katz thick smears and their implications in assessing infection status with Schistosoma mansoni. Acta Tropica 92, 205212.10.1016/j.actatropica.2004.06.011CrossRefGoogle ScholarPubMed
Carneiro, TR, Saramago Peralta, RH, Cunha Pinheiro, MC, de Oliveira, SM, Peralta, JM and Bezerra, FS (2013) A conventional polymerase chain reaction-based method for the diagnosis of human schistosomiasis in stool samples from individuals in a low-endemicity area. Memórias do Instituto Oswaldo Cruz 108, 10371044.10.1590/0074-0276130202CrossRefGoogle Scholar
Carvalho, GCD, Marques, LHDS, Gomes, LI, Rabello, A, Ribeiro, LC, Scopel, KKG, Tibirica, SHC, Coimbra, ES and Abramo, C (2012) Polymerase chain reaction for the evaluation of Schistosoma mansoni infection in two low endemicity areas of Minas Gerais, Brazil. Memórias do Instituto Oswaldo Cruz 107, 899902.10.1590/S0074-02762012000700010CrossRefGoogle ScholarPubMed
Cnops, L, Tannich, E, Polman, K, Clerinx, J and Esbroeck, MV (2012) Schistosoma real-time PCR as diagnostic tool for international travellers and migrants. Tropical Medicine and International Health 17, 12081216.10.1111/j.1365-3156.2012.03060.xCrossRefGoogle ScholarPubMed
Coelho, PM, Jurberg, AD, Oliveira, AA and Katz, N (2009) Use of a saline gradient for the diagnosis of schistosomiasis. Memórias do Instituto Oswaldo Cruz 104, 720723.10.1590/S0074-02762009000500010CrossRefGoogle Scholar
Coelho, PM, Siqueira, LM, Grenfell, RF, Almeida, NB, Katz, N, Almeida, Á, Carneiro, NF and Oliveira, E (2016) Improvement of POC-CCA interpretation by using lyophilization of urine from patients with Schistosoma mansoni low worm burden: towards an elimination of doubts about the concept of trace. PLoS Neglected Tropical Diseases 10, e0004778.10.1371/journal.pntd.0004778CrossRefGoogle ScholarPubMed
Colley, DG, Binder, S and Campell, C (2013) A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 88, 426432.10.4269/ajtmh.12-0639CrossRefGoogle ScholarPubMed
Colley, DG, Bustinduy, AL, Secor, WE and King, CH (2014) Human schistosomiasis. The Lancet 383, 22532264.10.1016/S0140-6736(13)61949-2CrossRefGoogle ScholarPubMed
Dean, AG, Sullivan, KM and Soe, MM (2013) OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 3.01. Website Available at http://www.OpenEpi.com (accessed 29 july 2019).Google Scholar
Engels, D, Sinzinkayo, E and Gryseels, B (1996) Day-To-Day Egg count fluctuation in Schistosoma mansoni infection and its operational implications. American Journal of Tropical Medicine and Hygiene 54, 319324.10.4269/ajtmh.1996.54.319CrossRefGoogle ScholarPubMed
Enk, MJ, Lima, AC, Drummond, SC, Schall, VT and Coelho, PMZ (2008) The effect of the number of stool samples on the observed prevalence and the infection intensity with Schistosoma mansoni among a population in an area of low transmission. Acta Tropica 108, 222228.10.1016/j.actatropica.2008.09.016CrossRefGoogle Scholar
Enk, MJ, Oliveira e Silva, G and Rodrigues, NB (2012) Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS ONE 7, e38947.10.1371/journal.pone.0038947CrossRefGoogle ScholarPubMed
Espirito-Santo, MCC, Alvarado-Mora, MV, Dias-Neto, E, Botelho-Lima, LS, Moreira, JP, Amorim, M, Pinto, PL, Heath, AR, Castilho, VL, Goncalves, EM, Luna, EJ, Carrilho, FJ, Pinho, JR and Gryschek, RC (2014) Evaluation of real-time PCR assay to detect Schistosoma mansoni infections in a low endemic setting. BMC Infectious Diseases 14, 558.10.1186/s12879-014-0558-4CrossRefGoogle Scholar
Ferrari, MLA, Coelho, PMZ, Antunes, CMF, Tavares, CA and Da Cunha, AS (2003) Efficacy of oxamniquine and praziquantel in the treatment of Schistosoma mansoni Infection: a controlled trial. Bulletin of the World Health Organization 81, 190196.Google ScholarPubMed
GBD (2017) Causes of death collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet (London, England) 390, 11511210.10.1016/S0140-6736(17)32152-9CrossRefGoogle Scholar
Gomes, AL, Melo, FL, Werkhauser, RP and Abath, FG (2006) Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA. Memórias do Instituto Oswaldo Cruz 101, 133136.10.1590/S0074-02762006000900021CrossRefGoogle ScholarPubMed
Gomes, LI, Marques, LH, Enk, MJ, Coelho, PM and Rabello, A (2009) Further evaluation of an updated PCR assay for the detection of Schistosoma mansoni DNA in human fecal samples. Memórias do Instituto Oswaldo Cruz 104, 11941196.CrossRefGoogle Scholar
Gomes, LI, Dos Santos Marques, LH, Enk, MJ, de Oliveira, MC, Coelho, PM and Rabello, A (2010) Development and evaluation of a sensitive PCR-ELISA system for detection of schistosoma infection in feces. PLoS Neglected Tropical Diseases 4, e664.CrossRefGoogle ScholarPubMed
Gordon, CA, Acosta, LP, Gobert, GN, Olveda, RM, Ross, AG, Williams, GM, Gray, DJ, Harn, D, Li, Y and McManus, DP (2015) Real-time PCR demonstrates high prevalence of Schistosoma japonicum in the Philippines: implications for elimination programs. PLoS Neglected Tropical Diseases 9, e0003483.10.1371/journal.pntd.0003483CrossRefGoogle Scholar
Gryseels, B, Polman, K, Clerinx, J and Kestens, L (2006) Human schistosomiasis. Lancet (London, England) 368, 11061118.10.1016/S0140-6736(06)69440-3CrossRefGoogle ScholarPubMed
Hamburger, J, Turetski, T, Kapeller, I and Deresiewicz, R (1991) Highly repeated short DNA sequences in the genome of Schistosoma mansoni recognized by a species-specific probe. Molecular and Biochemical Parasitology 44, 7380.CrossRefGoogle ScholarPubMed
Hamburger, J, Xu, YX, Ramzy, RM, Jourdane, J and Ruppel, A (1998 a) Development and laboratory evaluation of a polymerase chain reaction for monitoring Schistosoma mansoni infestation of water. American Journal of Tropical Medicine and Hygiene 59, 468470.CrossRefGoogle ScholarPubMed
Hamburger, J, Xu, YX, Ramzy, RM, Jourdane, J and Ruppel, A (1998 b) A polymerase chain reaction assay for detecting snails infected with bilharzia parasites (Schistosoma mansoni) from very early prepatency. American Journal of Tropical Medicine and Hygiene 59, 872876.CrossRefGoogle ScholarPubMed
He, P, Gordon, CA, Williams, GM, Li, Y, Wang, Y, Hu, J, Gray, DJ, Ross, AG, Harn, D and McManus, DP (2018) Real-time PCR diagnosis of Schistosoma japonicum in low transmission areas of China. Infectious Diseases of Poverty 7, 8.CrossRefGoogle ScholarPubMed
Katz, N (2018) Inquérito Nacional de Prevalência da Esquistossomose mansoni e Geo-Helmintoses, 22nd Edn. Belo Horizonte, BR: Editora Fiocruz.Google Scholar
Kongs, A, Marks, G, Verlé, P and Van Der Stuyft, P (2001) The unreliability of the Kato-Katz technique limits its usefulness for evaluating S. mansoni Infections. Tropical Medicine and International Health 6, 163169.CrossRefGoogle ScholarPubMed
Landis, JR and Koch, GG (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159. http://dx.doi.org/10.2307/2529310CrossRefGoogle ScholarPubMed
Lier, T, Simonsen, GS, Haaheim, H, Hjelmevoll, SO, Vennervald, BJ and Johansen, MV (2006) Novel real-time PCR for detection of Schistosoma japonicum in stool. Southeast Asian Journal of Tropical Medicine and Public Health 37, 257264.Google Scholar
Lier, T, Simonsen, GS, Wang, T, Lu, D, Haukland, HH, Vennervald, BJ, Hegstad, J and Johansen, MV (2009) Real-time polymerase chain reaction for detection of low-intensity Schistosoma japonicum infections in China. American Journal of Tropical Medicine and Hygiene 81, 428432.10.4269/ajtmh.2009.81.428CrossRefGoogle ScholarPubMed
Meurs, L, Brienen, E, Mbow, M, Ochola, EA, Mboup, S, Karanja, DMS, Secor, WE, Polman, K and van Lieshout, L (2015) Is PCR the next reference standard for the diagnosis of schistosoma in stool? A comparison with microscopy in Senegal and Kenya. PLoS Neglected Tropical Diseases 9, e0003959.CrossRefGoogle Scholar
Oliveira, LM, Santos, HL, Gonçalves, MM, Barreto, MG and Peralta, JM (2010) Evaluation of polymerase chain reaction as an additional tool for the diagnosis of low-intensity Schistosoma mansoni infection. Diagnostic Microbiology and Infectious Diseases 68, 416421.CrossRefGoogle Scholar
Oliveira, WJ, Magalhães, FDC, Elias, AMS, de Castro, VN, Favero, V, Lindholz, CG, Oliveira, AA, Barbosa, FS, Gil, F, Gomes, MA, Teixeira, CG, Enk, MJ, Carneiro, M, Negrão-Correa, D and Geiger, SM (2018) Evaluation of diagnostic methods for the detection of intestinal schistosomiasis in endemic areas with low parasite loads: saline gradient, Helmintex, Kato-Katz and rapid urine test. PLoS Neglected Tropical Diseases 12, e0006232. doi: 10.1371/journal.pntd.0006232CrossRefGoogle ScholarPubMed
Pontes, LA, Dias-Neto, E and Rabello, A (2002) Detection by polymerase chain reaction of Schistosoma mansoni DNA in human serum and feces. American Journal of Tropical Medicine and Hygiene 66, 157162.CrossRefGoogle ScholarPubMed
Pontes, LA, Oliveira, MC, Katz, N, Dias-Neto, E and Rabello, A (2003) Comparison of a polymerase chain reaction and the Kato-Katz technique for diagnosing infection with Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 68, 652656.CrossRefGoogle ScholarPubMed
Rabello, A, Pontes, LA and Dias-Neto, E (2002) Recent advances in the diagnosis of Schistosoma Infection: the detection of parasite DNA. Memórias do Instituto Oswaldo Cruz 97(Suppl.I), 71172.CrossRefGoogle Scholar
Sandoval, N, Siles-Lucas, M, Perez-Arellano, JL, Carranza, C, Puente, S, Lopez-Aban, J and Muro, A (2006) A new PCR-based approach for the specific amplification of DNA from different Schistosoma species applicable to human urine samples. Parasitology 133, 581587.CrossRefGoogle ScholarPubMed
Senra, C, Gomes, LI, Siqueira, LMV, Coelho, PMZ, Rabello, A and Oliveira, E (2018) Development of a laboratorial platform for diagnosis of schistosomiasis mansoni by PCR-ELISA. BMC Research Notes 11, 455.CrossRefGoogle ScholarPubMed
Siqueira, LMV, Gomes, LI, Oliveira, E, de Oliveira, ER, de Oliveira, AA, Enk, MJ, Carneiro, NF, Rabello, A and Coelho, PMZ (2015) Evaluation of parasitological and molecular techniques for the diagnosis and assessment of cure of schistosomiasis mansoni in a low transmission área. Memórias do Instituto Oswaldo Cruz 110, 209214.CrossRefGoogle Scholar
Siqueira, LM, Couto, FF, Taboada, D, Oliveira, ÁA, Carneiro, NF, Oliveira, E, Coelho, PMZ and Katz, N (2016) Performance of POC-CCA in diagnosis of schistosomiasis mansoni in individuals with low parasite burden. Journal of the Brazilian Society of Tropical Medicine 49, 341347.10.1590/0037-8682-0070-2016CrossRefGoogle ScholarPubMed
Standley, CJ, Lwambo, NJS, Lange, CN, Kariuki, HC, Adriko, M and Stothard, JR (2010) Performance of circulating cathodic antigen (CCA) urine-dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria. Parasites and Vectors 3, 7. doi: 10.1186/1756-3305-3-7.CrossRefGoogle ScholarPubMed
Steinmann, P, Keiser, J, Bos, R, Tanner, M and Utzinger, J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infectious Diseases 6, 411425.10.1016/S1473-3099(06)70521-7CrossRefGoogle ScholarPubMed
Stothard, JR, Sousa-Figueiredo, JC, Standley, C, Van Dam, GJ, Knopp, S, Utzinger, J, Ameri, H, Khamis, AN, Khamis, IS, Deelder, AM, Mohammed, KA and Rollinson, D (2009) An evaluation of urine-CCA strip test and finger prick blood SEA-ELISA for detection of urinary schistosomiasis in schoolchildren in Zanzibar. Acta Tropica 111, 6470.10.1016/j.actatropica.2009.02.009CrossRefGoogle Scholar
ten Hove, RJ, Verweij, JJ, Vereecken, K, Polman, K, Dieye, L and van Lieshout, L (2008) Multiplex real-time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium Infection in fecal samples collected in northern Senegal. Transactions of the Royal Society of Tropical Medicine and Hygiene 102, 179185.10.1016/j.trstmh.2007.10.011CrossRefGoogle ScholarPubMed
Utzinger, J, N'Goran, EK, N'Dri, A, Lengeler, C and Tanner, M (2000) Efficacy of praziquantel against Schistosoma mansoni with particular consideration for intensity of infection. Tropical Medicine and International Health 5, 771778.CrossRefGoogle ScholarPubMed
Utzinger, J, Booth, M, N'goran, EK, Muller, I, Tanner, M and Lengeler, C (2001) Relative contribution of day-to-day and intra-specimen variation in faecal egg counts of Schistosoma mansoni Before and after treatment with praziquantel. Parasitology 122, 537544.CrossRefGoogle ScholarPubMed
Van Dam, GJ, Bergwerff, AA, Thomas-Oates, JE, Rotmano, JP, Kamerling, JP, Vliegenthard, JF and Deelder, AM (1994) The immunologically reactive O-linked polysaccharide chains derived from circulating cathodic antigen isolated from the human blood fluke Schistosoma mansoni have Lewis x as repeating unit. European Journal Biochemistry 225, 467482.Google ScholarPubMed
Van Dorssen, CF, Gordon, CA, Li, Y, Williams, GM, Wang, Y, Luo, Z, Gobert, GN, You, H, McManus, DP and Gray, DJ (2017) Rodents, goats, and dogs – their potential role in ongoing transmission of schistosomiasis in China. Parasitology 144, 16331642.CrossRefGoogle Scholar
Weerakoon, KG, Gordon, CA, Gobert, GN, Cai, P and McManus, DP (2016) Optimisation of a droplet digital PCR assay for the diagnosis of Schistosoma japonicum infection: a duplex approach with DNA binding dye chemistry. Journal of Microbiological Methods 125, 1927.CrossRefGoogle Scholar
Weerakoon, KG, Gordon, CA, Williams, GM, Cai, P, Gobert, GN, Olveda, RM, Ross, AG, Olveda, DU and McManus, DP (2017) Droplet digital PCR diagnosis of human schistosomiasis: parasite cell-free DNA detection in diverse clinical samples. Journal Infectious Diseases 216, 16111622.CrossRefGoogle ScholarPubMed
Weerakoon, KG, Gordo, CA and McManus, DP (2018) DNA Diagnostics for Schistosomiasis control. Tropical Medicine and Infectious Disease 3, 81.CrossRefGoogle ScholarPubMed
Wichmann, D, Panning, M, Quack, T, Kramme, S, Burchard, GD, Grevelding, C and Drosten, C (2009) Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma. PLoS Neglected Tropical Diseases 3, e422.CrossRefGoogle ScholarPubMed
World Health Organization (1993) The Control of Schistosomiasis Second Report of the WHO Expert Committee. WHO Technical Report Series No. 830. Geneva, Switzerland: World Health Organization.Google Scholar
World Health Organization (2002) Prevention and Control of Schistosomiasis and Soil-Transmitted Helminthiasis WHO Technical Report Series No. 912. Geneva, Switzerland: World Health Organization.Google Scholar
World Health Organization (2016) World Health Statistics 2016: Monitoring Health for the SDGs. World Health Organization. Retrieved from Global Health Observatory (GHO) data. Geneva, Switzerland: World Health Organization. website https://www.who.int/gho/publications/world_health_statistics/2016/en/ (accessed 20 may 2018).Google Scholar