Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T14:56:22.814Z Has data issue: false hasContentIssue false

Restricted morphospace occupancy of early Cambrian reef-building archaeocyaths

Published online by Cambridge University Press:  05 March 2019

David R. Cordie
Affiliation:
Department of Geosciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201, U.S.A. E-mail: drcordie@uwm.edu, sdornbos@uwm.edu
Stephen Q. Dornbos
Affiliation:
Department of Geosciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201, U.S.A. E-mail: drcordie@uwm.edu, sdornbos@uwm.edu

Abstract

The evolution of novel morphologies can signify expansion of a clade into new niches. This can be studied in the fossil record by investigating the morphospace occupancy of organisms, with small morphospaces signifying low morphological disparity and more diffuse morphospaces suggesting a broader range of morphologies adapted to different environments. Morphological disparity of many taxa (arthropods, crinoids, etc.) from the Cambrian to modern intervals have been studied in this manner. However, no study has investigated this in archaeocyaths, which, as reef builders, can have a disproportionate effect on early Cambrian biodiversity relative to their frequency. Here, we collect morphological data on archaeocyathan sponges, mostly from Laurentia. More than 600 museum specimens and 400 field samples were measured for traditional morphometric characters and discrete gross morphological characteristics. We find that archaeocyaths have an average cup/individual (body) diameter of 10.6 mm. This is significantly smaller than a selected group of modern demosponges and lithistid sponges that measure 94.1 mm and 66.8 mm in diameter, respectively, and each has a larger size variance. Archaeocyathan gross morphologies are also highly constrained to a few simple morphologies (three to six categories), while modern demosponges and lithistids are more diverse (nine categories each). These data indicate that Laurentian archaeocyaths were restricted in their morphological disparity, potentially due to limitations imposed by having a robust calcareous skeleton while still maintaining a large intervallum cavity space to facilitate passive entrainment. The fact that these Cambrian reef builders were restricted in their morphological complexity may have had a strong influence on the biodiversity of early Phanerozoic ecosystems. Furthermore, a clade limited to only a few specific morphologies is at an increased risk of extinction.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.8hg2gg6

References

Literature Cited

Balsam, W. L., and Vogel, S.. 1973. Water movement in archaeocyathids: evidence and implications of passive flow models. Journal of Paleontology 47:979984.Google Scholar
Barthel, D., and Brandt, A.. 1995. Caecognathia robusta (G.O. Sars, 1879) (Crustacea, Isopoda) in Geodia mesotriaena (Hentschel, 1929) (Demospongiae, Choristidae) at 75° N off NE Greenland. Sarsia 80:223228.Google Scholar
Bell, J. J., and Barnes, D. K. A.. 2000. The influences of bathymetry and flow regime upon the morphology of sublittoral sponge communities. Journal of Marine Biological Association of the United Kingdom 80:707718.Google Scholar
Bell, J. J., and Barnes, D. K. A.. 2001. Sponge morphological diversity: a qualitative predictor of species diversity? Aquatic Conservation: Marine and Freshwater Ecosystems 11:109121.Google Scholar
Bell, J. J., Barnes, D. K. A., and Turner, J. R.. 2002. The importance of micro and macro morphological variation in the adaptation of a sublittoral demosponge to current extremes. Marine Biology 140:7581.Google Scholar
Bellwood, D. R., Goatley, C. H. R., Brandl, S. J., and Bellwood, O.. 2014. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proceedings of the Royal Society of London B 281:20133046.Google Scholar
Botting, J. P., and Peel, J. S.. 2016. Early Cambrian sponges of the Sirius Passet Biota, North Greenland. Papers in Palaeontology 2:463487.Google Scholar
Boury-Esnault, N., and Rützler, K.. 1997. Thesaurus of sponge morphology. Smithsonian contributions to zoology 596. Smithsonian Institution, Washington, D.C.Google Scholar
Boyajian, G. E., and LaBarbera, M.. 1987. Biomechanical analysis of passive flow stromatoporoids—morphologic, paleoecologic, and systematic implications. Lethaia 20:223229.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Willis, M. A.. 1992. Morphological disparity in the Cambrian. Science 256:16701673.Google Scholar
Carrera, M. G., and Botting, J. P.. 2008. Evolutionary history of Cambrian spiculate sponges: implications for the Cambrian Evolutionary Fauna. Palaios 23:124138.Google Scholar
Church, S. B. 2017. Efficient ornamentation in Ordovician anthaspidellid sponges. Paleontological Contributions 18:18.Google Scholar
Cohen, A. L., and Holcomb, M.. 2009. Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118127.Google Scholar
Cohen, J. 1992. A power primer. Psychological Bulletin 112:155159.Google Scholar
Cordie, D. R., Dornbos, S. Q., Marenco, P. J., Oji, T., and Gonchigdorf, S.. 2019. Depauperate skeletonized reef-dwelling fauna of the early Cambrian: insights from archaeocyathan reef ecosystems of western Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology 514:206221.Google Scholar
Debrenne, F., and Zhuravlev, A.. 1992. Irregular archaeocyaths. CNRS Editions, Paris.Google Scholar
Debrenne, F., and Zhuravlev, A.. 1994. Archaeocyathan affinities: how deep can we go into the systematic affiliation of an extinct group? Pp. 312 in van Soest, R. W. M., van Kempen, T. M. G., and Braekman, J. C., eds. Sponges in time and space. Balkema, Rotterdam.Google Scholar
Debrenne, F., Rozanov, A., and Zhuravlev, A.. 1990. Regular archaeocyaths. CNRS Editions, Paris.Google Scholar
Debrenne, F., Kruse, P. D., and Sengui, Z.. 1991. An Asian compound archaeocyath. Alcheringa 15:285291.Google Scholar
Debrenne, F., Zhuravlev, A. Y., and Kruse, P. D.. 2015. General features of the Archaeocyatha. Pp. 8451084 in Debrenne, F., Hartman, W. D., Kershaw, S., Kruse, P. D., Nestor, H., Rigby, J. K. Sr., Senowbari-Daryan, B., Stern, C. W., Stock, C. W., Vacelet, J., Webby, B. D., West, R. R., Willenz, P., Wood, R. A., and Zhuravlev, A. Y.. Porifera (revised), vol. 5, Hypercalcified Porifera. Part E of P. A. Selden, ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and development context. Palaeontology 50:5773.Google Scholar
Erwin, D. H. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends in Ecology and Evolution 23:304310.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences USA 89:73257329.Google Scholar
Germer, J., Mann, K., Wörheide, G., and Jackson, D. J.. 2015. The skeleton forming proteome of an early branching metazoan: a molecular survey of the biomineralization components employed by the coralline sponge Vacelatia sp. PLoS ONE 10:e0140100.Google Scholar
Ghiold, J., Rountree, G. A., and Smith, S. H.. 1994. Common sponges of the Cayman Islands. The Cayman Islands. Pp. 131138 in Brunt, M. A. and Davies, J. E., eds. The Cayman Islands: natural history and biogeography. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Gili, C., and Marinell, J.. 1994. Relationship between species longevity and larval ecology in nassariid gastropods. Lethaia 27:291299.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.Google Scholar
Gray, E. L., Burwell, C. J., and Baker, A. M.. 2016. Benefits of being a generalist carnivore when threatened by climate change: the comparative dietary ecology of two sympatric semelparous marsupials, including a new endangered species (Antechinus arktos). Australian Journal of Zoology 64:249261.Google Scholar
Hageman, S. J., and McKinney, F. K.. 2010. Discrimination of fenestrate bryozoan genera in morphospace. Palaeontologia Electronica 13:143.Google Scholar
Hellberg, M. E., Balch, D. P., and Roy, K.. 2001. Climate-driven range expansion and morphological evolution in a marine gastropod. Science 292:17071710.Google Scholar
Hicks, M. 2006. A new genus of early Cambrian coral in Esmeralda county, southwestern Nevada. Journal of Paleontology 80:609615.Google Scholar
Hill, D. 1964. The phylum Archaeocyatha. Biological Review 39:232258.Google Scholar
Hong, J., Choh, S.-J., Park, J., and Lee, D.-J.. 2017. Construction of the earliest stromatoporoids framework: labechiid reefs from the Middle Ordovician of Korea. Palaeogeography, Palaeoclimatology, Palaeoecology 470:5462.Google Scholar
Hooper, J. N. A., and Van Soest, R. W. M., eds. 2002. Systema Porifera: a guide to the classification of sponges, Vol. 1. Kluwer Academic/Plenum, New York.Google Scholar
Huang, S., Roy, K., and Jablonski, D.. 2014. Origins, bottlenecks, and present-day diversity: patterns of morphospace occupation in marine bivalves. Evolution 69:735746.Google Scholar
Jablonski, D., and Hunt, G.. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219222.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1998. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology 24:155176.Google Scholar
Kerner, A., Debrenne, F., and Vignes-Lebbe, R.. 2011. Cambrian archaeocyath metazoans: revisions of morphological characters and standardization of genus descriptions to establish an online identification tool. In Smith, V. and Penev, I., eds. e-Infrastructure for data publishing in biodiversity science. ZooKeys 150:381–395.Google Scholar
Kerry, J. T., and Bellwood, D. R.. 2012. The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 31:415424.Google Scholar
Kiessling, W., and Simpson, C.. 2010. On the potential for ocean acidification to be a general cause of ancient reef crisis. Global Change Biology 17:5667.Google Scholar
Knoll, A. H., and Fischer, W. W.. 2011. Skeletons and ocean chemistry: the long view. Pp. 6782 in Gattuso, J.-P. and Hansson, L.. eds. Ocean acidification. Oxford University Press, Oxford.Google Scholar
Kruse, P. D., and Reitner, J. R.. 2014. Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction. Memoirs of the Association of Australian Palaeontologists 45:3153.Google Scholar
Kruse, P. D., and Zhuravlev, A. Y.. 2008. Middle-late Cambrian Rankenella-Girvanella reefs of the Mila Formation, northern Iran. Canadian Journal of Earth Science 45:619639.Google Scholar
Kruse, P. D., Gandin, A., Debrenne, F., and Wood, R.. 1996. Early Cambrian bioconstructions in the Zavkhan Basin of western Mongolia. Geological Magazine 133:429444.Google Scholar
LaBarbera, M. 1993. The astrorhizae of fossil stromatoporoids closely approximate an energically optimal fluid transport system. Experientia 49:539541.Google Scholar
LaBarbera, M., and Boyajian, G. E.. 1991. The function of astrorhizae in stromatoporoids: quantitative tests. Paleobiology 17:121132.Google Scholar
Lee, J.-H., Hong, J., Choh, S.-J., Lee, D.-J., Woo, J., and Riding, R.. 2016. Early recovery of sponge framework reefs after Cambrian archaeocyath extinction: Zhangxia Formation (early Cambrian Series 3), Shandong, North China. Palaeogeography, Palaeoclimatology, Palaeoecology 457:269276.Google Scholar
Lee, J.-H., and Riding, R.. 2018. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs. Earth-Science Reviews 181:98121.Google Scholar
Lefebvre, B., Eble, G. J., Navarro, N., and David, B.. 2006. Diversification of atypical Paleozoic echinoderms: a quantitative survey of patterns of stylophoran disparity, diversity, and geography. Paleobiology 32:483510.Google Scholar
Leys, S. P., Yahel, G., Reibenbach, M. A., Tunnicliffe, V., Shavit, U., and Reiswig, H. M.. 2011. The sponge pump: the role of current induced flow in the design of the sponge body plan. PLoS ONE 6:e27787.Google Scholar
Li, Q., Li, Y., Wang, J., and Kiessling, W.. 2015. Early Ordovician lithistid sponge-Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 425:8496.Google Scholar
Li, Q., Li, Y., and Kiessling, W.. 2016. The oldest labechiid stromatoporoids from intraskeletal crypts in lithistid sponge-Calathium reefs. Lethaia 50:140148.Google Scholar
Liu, B., Rigby, J. K., and Zhu, Z.. 2003. Middle Ordovician lithistid sponges from the Bachu-Kalpin Area, Xinjiang, northwestern China. Journal of Paleontology 77:430441.Google Scholar
Löfgren, A. S., Plotnick, R. E., and Wagner, P. J.. 2003. Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology 29:349368.Google Scholar
Losos, J. B. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism. American Naturalist 175:623639.Google Scholar
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V.. 2001. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294:10861088.Google Scholar
McCormack, J. E., and Smith, T. B.. 2008. Niche expansion leads to small-scale adaptive divergence along an elevation gradient in a medium-sized passerine bird. Proceedings of the Royal Society of London B 275:21552164.Google Scholar
McKee, E. H. 1963. Ontogenetic stages of the archaeocyathid Ethmophyllum whitneyi Meek. Journal of Paleontology 37:287293.Google Scholar
McMurrary, S. E., Blum, J. E., and Pawlik, J. R.. 2008. Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Marine Biology 155:159171.Google Scholar
Mitteroecker, P., and Huttegger, S. M.. 2009. The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biological Theory 4:5467.Google Scholar
Nickel, M., Bullinger, E., and Beckmann, F.. 2006. Functional morphology of Tethya species (Porifera): 2. Three-dimensional morphometrics on spicules and skeletal superstructures of T. minuta. Zoomorphology 125:225239.Google Scholar
Palumbi, S. R. 1984. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225:14781480.Google Scholar
Palumbi, S. R. 1986. How body plans limit acclimation: responses of a demosponge to wave force. Ecology 67:208214.Google Scholar
Pickett, J. 1985. Vaceletia, the living archaeocyathid. New Zealand Geological Survey Record 9:77.Google Scholar
Porter, S. M. 2010. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology 8:256277.Google Scholar
Pruss, S. B., Finnegan, S., Fischer, W. W., and Knoll, A. H.. 2010. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia. Palaios 25:7384.Google Scholar
Raia, P., Carotenuto, F., Mondanaro, A., Castiglione, S., Passaro, F., Saggese, F., Melchionna, M., Serio, C., Alessio, L., Silvestro, D., and Fortelius, M.. 2016. Progress to extinction: increased specialization causes the demise of animal clades. Scientific Reports 6:30965.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Reitner, J., Langsford, N., and Kruse, P. D.. 2017. An unusual ferruginous-calcitic Frutexites microbialite community from the lower Cambrian of the Flinders Ranges, South Australia. Paläontologische Zeitschrift 91:13.Google Scholar
Riding, R., Liang, L., Lee, J.-H., and Virgone, A.. 2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography, Palaeoclimatology, Palaeoecology 514:135143.Google Scholar
Ritterbush, K. A., and Bottjer, D. J.. 2012. Westermann morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424446.Google Scholar
Rowland, S. M. 2001. Archaeocyaths—a history of phylogenetic interpretation. Journal of Paleontology 75:10651078.Google Scholar
Savarese, M. 1992. Functional analysis of archaeocyath skeletal morphology and its paleobiological implications. Paleobiology 18:464480.Google Scholar
Savarese, M. 1995. Functional significance of regular archaeocyath central cavity diameter: a biomechanical and paleoecological test. Paleobiology 21:356378.Google Scholar
Savarese, M., and Signor, P. W.. 1989. New archaeocyathan occurrences in the upper Harkless Formation (Lower Cambrian of western Nevada). Journal of Paleontology 63:539549.Google Scholar
Schuster, A., Erpenbeck, D., Pisera, A., Hooper, J., Bryce, M., Fromont, J., and Wörteide, G.. 2015. Deceptive desmas: molecular phylogenetics suggests a new classification and uncovers convergent evolution of lithistid demosponges. PLoS ONE 10:e116038.Google Scholar
Senowbari-Daryan, B., and Stanley, G. D.. 1992. Late Triassic thalamid sponges from Nevada. Journal of Paleontology 66:183193.Google Scholar
Senowbari-Daryan, B. and Zamparelli, V.. 2003. Upper Triassic (Norian–Rhaetian) new thalamid sponges from northern Calabria (southern Italy). Studia Universitatis Babeş–Bolyai, Geologia 48:113124.Google Scholar
Servias, T., Perrier, V., Danelian, T., Klug, C., Martin, R., Munnecke, A., Nowak, H., Nützel, A., Vandenbroucke, T. R. A., Williams, M., and Rasmussen, C. M. Ø.. 2016. The onset of the “Ordovician Plankton Revolution” in the late Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 458:1228.Google Scholar
Shapiro, R. S., and Rigby, J. K.. 2004. First occurrence of an in situ anthaspidellid sponge in a dendrolite mound (upper Cambrian; Great Basin, USA). Journal of Paleontology 78:645650.Google Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M.. 2008. The Avalon explosion: evolution of Ediacara morphospace. Science 319:8184.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Stern, C. W., Webby, B. D., Nestor, H., and Stock, C. W.. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica 44:170.Google Scholar
Uriz, M-J., Turon, X., Becerro, M. A., and Agell, G.. 2003. Siliceous spicules and skeletal frameworks in sponges: origin, diversity, ultrastructure patterns, and biological functions. Microscopy Research and Technique 62:279299.Google Scholar
Wagner, D., and Kelley, C. D.. 2016. The largest sponge in the world? Marine Biodiversity 47:367368.Google Scholar
Watkins, R. 2000. Corallite size and spacing as an aspect of niche–partitioning in tabulate corals of Silurian reefs, Racine Formation, North America. Lethaia 33:5563.Google Scholar
Webby, B. D. 1979. The oldest Ordovician stromatoporoids from Australia. Alcheringa 3:237251.Google Scholar
Willis, M. A. 1998. Cambrian and recent disparity: the picture from priapulids. Paleobiology 24:177199.Google Scholar
Wilson, S. K., Burgess, S. C., Cheal, A. J., Emslie, M., Fisher, R., Miller, I., Polunin, N. V. C., and Sweatman, H. P. A.. 2007. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. Journal of Animal Ecology 77:220228.Google Scholar
Wolniewicz, P. 2009. Late Framennian stromatoporoids from Dębnik Anticline, Southern Poland. Acta Palaeontologica Polonica 54:337350.Google Scholar
Wood, R. 1995. The changing biology of reef-building. Palaios 10:517529.Google Scholar
Wood, R., Zhuravlev, A. Y., and Debrenne, F.. 1992. Functional biology and ecology of archaeocyatha. Palaios 7:131156.Google Scholar
Wörheide, G. 2008. A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge. Molecular Phylogenetics and Evolution 47:433438.Google Scholar
Wörheide, G., and Reitner, J.. 1996. “Living fossil” sphinctozoan coralline sponge colonies in shallow water caves of the Osprey Reef (Coral Sea) and the Astrolabe Reefs (Fiji Islands). Pp. 145148 in Reitner, J., Neuweiler, F., and Gunkel, F.. eds. Göttinger Arbeiten zur Geologie und Paläeontologie. University of Goettingen, Goettingen, Germany.Google Scholar
Wulff, J. L. 2006. Resistance vs recovery: morphological strategies of coral reef sponges. Functional Ecology 20:699708.Google Scholar
Xiao, S., Hu, J., Yuan, X., Parsley, R. L., and Cao, R.. 2005. Articulated sponges form the lower Cambrian Hetang Formation in southern Anhui, South China: their age and implications for the early evolution of sponges. Palaeogeography, Palaeoclimatology, Palaeoecology 220:89117.Google Scholar
Yang, J., Ortega-Hernández, J., Gerber, S., Butterfield, N. J., Hou, J.-B., Lan, T., and Zhang, X.-G.. 2015. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora. Proceedings of the National Academy of Sciences USA 114:86788683.Google Scholar
Zhuravlev, A. Y., and Wood, R. A.. 2009. Controls on carbonate skeletal mineralogy: global CO2 evolution and mass extinctions. Geology 37:11231126.Google Scholar