Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T17:12:29.135Z Has data issue: false hasContentIssue false

Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions

Published online by Cambridge University Press:  08 April 2016

Adam Tomašových
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637 Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia. E-mail: tomasovych@uchicago.edu
Susan M. Kidwell
Affiliation:
University of Chicago, Department of Geophysical Sciences, Chicago, Illinois 60637. E-mail: skidwell@uchicago.edu

Abstract

Paleoecological analyses that test for spatial or temporal variation in diversity must consider not only sampling and preservation bias, but also the effects of temporal scale (i.e., time-averaging). The species-time relationship (STR) describes how species diversity increases with the elapsed time of observation, but its consequences for assessing the effects of time-averaging on diversity of fossil assemblages remain poorly explored. Here, we use a neutral, dispersal-limited model of metacommunity dynamics, with parameters estimated from living assemblages of 31 molluscan data sets, to model the effects of within-habitat time-averaging on the mean composition and multivariate dispersion of assemblages, on diversity at point (single station) and habitat scales (pooled multiple stations), and on beta diversity. We hold sample size constant in STRs to isolate the effects of time-averaging from sampling effects. With increasing within-habitat time-averaging, stochastic switching in the identity of species in living (dispersal-limited) assemblages (1) decreases the proportional abundance of abundant species, reducing the steepness of the rank-abundance distribution, and (2) increases the proportional richness of rare, temporally short-lived species that immigrate from the neutral metacommunity with many rare species. These two effects together (1) can shift the mean composition away from the non-averaged (dispersal-limited) assemblages toward averaged assemblages that are less limited by dispersal, resembling that of the metacommunity; (2) allow the point and habitat diversity to increase toward metacommunity diversity under a given sample size (i.e., the diversity in averaged assemblages is inflated relative to non-averaged assemblages); and (3) reduce beta diversity because species unique to individual stations become shared by other stations when limited by a larger but static species pool. Surprisingly, these scale-dependent changes occur at fixed sample sizes and can become significant after only a few decades or centuries of time-averaging, and are accomplished without invoking ecological succession, environmental changes, or selective postmortem preservation. Time-averaging results in less inflation of diversity at habitat than at point scales; paleoecological studies should thus analyze data at multiple spatial scales, including that of the habitat where multiple bulk samples have been pooled in order to minimize time-averaging effects. The diversity of assemblages that have accumulated over 1000 years at point and habitat scales is expected to be inflated by an average of 2.1 and 1.6, respectively. This degree of inflation is slightly higher than that observed in molluscan death assemblages at these same spatial scales (1.8 and 1.3). Thus, neutral metacommunity models provide useful quantitative constraints on directional but predictable effects of time-averaging. They provide minimal estimates for the rate of increase in diversity with time-averaging because they assume no change in environmental conditions and in the composition of the metacommunity within the window of averaging.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adler, P. B., and Lauenroth, W. K. 2003. The power of time: spatiotemporal scaling of species diversity. Ecology Letters 6:749756.Google Scholar
Adler, P. B., White, P. E., Lauenroth, W. K., Kaufman, D. M., Rassweiler, A., and Rusak, J. A. 2005. Evidence for a general species-time-area relationship. Ecology 86:20322039.Google Scholar
Adrain, J. M., Westrop, S. R., Chatterton, B. D. E., and Ramsköld, L. 2000. Silurian trilobite alpha diversity and the end-Ordovician mass extinction. Paleobiology 26:625646.Google Scholar
Allen, T. F. H., and Hoekstra, T. W. 1992. Toward a unified ecology. Columbia University Press, New York.Google Scholar
Allen, T. F. H., and Star, T. B. 1982. Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago.Google Scholar
Allouche, O., and Kadmon, R. 2009. A general framework for neutral models of community dynamics. Ecology Letters 12:12871297.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nuernberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Anderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245253.Google Scholar
Anderson, M. J., Ellingsen, K. E., and McArdle, B. H. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683693.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology 8:211227.CrossRefGoogle Scholar
Behrensmeyer, A. K., and Chapman, R. E. 1993. Models and simulations of taphonomic time-averaging in terrestrial vertebrate assemblages. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:125149. Paleontological Society, Knoxville, Tenn. Google Scholar
Behrensmeyer, A. K., and Hook, R. W. 1992. Paleoenvironmental contexts and taphonomic modes. Pp. 15136 in Behrensmeyer, A. K. et al. eds. Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
Bell, G. 2000. The distribution of abundance in neutral communities. American Naturalist 155:606617 Google Scholar
Bengtsson, J., Engelhardt, K., Giller, P., Hobbie, S., Lawrence, D., Levine, J., Vila, M., and Wolters, V. 2002. Slippin' and slidin' between the scales: the scaling components of biodiversity-ecosystem functioning relations. Pp. 209220 in Loreau, M., Naeem, S., and Inchausti, P., eds. Biodiversity and ecosystem functioning. Oxford University Press, Oxford.Google Scholar
Bennington, J B. 2003. Transcending patchiness in the comparative analysis of paleocommunities: a test case from the Upper Cretaceous of New Jersey. Palaios 18:2233.Google Scholar
Bennington, J B., and Bambach, R. K. 1996. Statistical testing for paleocommunity recurrence: Are similar fossil assemblages ever the same? Palaeogeography, Palaeoclimatology, Palaeoecology 127:107133 Google Scholar
Borda-de-Água, L., Hubbell, S. P., and McAllister, M. 2002. Species-area curves, diversity indices, and species abundance distributions: a multifractal analysis. American Naturalist 159:138155.Google Scholar
Borda-de-Água, L., Hubbell, S. P., and He, F. 2007. Scaling biodiversity under neutrality. Pp. 347375 in Storch, et al. 2007.Google Scholar
Brewer, A., and Williamson, M. 1994. A new relationship for rarefaction. Biodiversity and Conservation 3:373379.CrossRefGoogle Scholar
Brown, J. H. 1984. On the relationship between abundance and distribution of species. American Naturalist 124:255279.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.Google Scholar
Buzas, M., and Hayek, L. A. C. 2005. On richness and eveness within and between communities. Paleobiology 31:199220.Google Scholar
Carey, S., Ostling, A., Harte, J., and del Moral, R. 2007. Impact of curve construction and community dynamics on the species-time relationship. Ecology 88:21452153.Google Scholar
Carroll, M., Kowalewski, M., Simões, M. G., and Goodfriend, G. A. 2003. Quantitative estimates of time-averaging in terebratulid shell accumulations from a modern tropical shelf. Paleobiology 29:381402.2.0.CO;2>CrossRefGoogle Scholar
Chao, A., Chazdon, R. L., Colwell, R. K., and Shen, T.-J. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8:148159.CrossRefGoogle Scholar
Chave, J., and Leigh, E. G. Jr. 2002. A spatially explicit neutral model of β-diversity in tropical forests. Journal of Theoretical Biology 62:153168.Google Scholar
Chave, J., Muller-Landau, H. C., and Levin, S. A. 2002. Comparing classic community models: theoretical consequences for patterns of diversity. American Naturalist 159:123.Google Scholar
Chisholm, R. A., and Lichstein, J. W. 2009. Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecology Letters 12:13851393.Google Scholar
Clark, J. S., and McLachlan, J. S. 2003. Stability of forest biodiversity. Nature 423:635638.Google Scholar
Coleman, B. D. 1981. On random placement and species-area relations. Mathematical Biosciences 54:191215.Google Scholar
Coleman, B. D., Mares, M. A., Willig, M. R., and Hsieh, Y.-H. 1982. Randomness, area, and species richness. Ecology 63:11211133.Google Scholar
Collins, S. L. 2000. Disturbance frequency and community stability in native tallgrass prairie. American Naturalist 155:311325.Google Scholar
Collins, S. L., Micheli, F., and Hartt, L. 2000. A method to determine rates and patterns of variability in ecological communities. Oikos 91:285293.CrossRefGoogle Scholar
Cutler, A. H. 1993. Mathematical models of temporal mixing in the fossil record. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:169187. Paleontological Society, Knoxville, Tenn. Google Scholar
Dengler, J. 2009. Which function describes the species-area relationship best? A review and empirical evaluation. Journal of Biogeography 36:728744.CrossRefGoogle Scholar
Dornelas, M., and Connolly, S. R. 2008. Multiple modes in a coral species abundance distribution. Ecology Letters 11:10081016.CrossRefGoogle Scholar
Durrett, R., and Levin, S. 1996. Spatial models for species-area curves. Journal of Theoretical Biology 179:119127.Google Scholar
Etienne, R. S. 2005. A new sampling formula for neutral biodiversity. Ecology Letters 8:253260.Google Scholar
Etienne, R. S. 2007. A neutral sampling formula for multiple samples and an “exact” test of neutrality. Ecology Letters 10:608618.CrossRefGoogle Scholar
Etienne, R. S. 2009. Maximum likelihood estimation of neutral model parameters for multiple samples with different degrees of dispersal limitation. Journal of Theoretical Biology 257:510514.Google Scholar
Etienne, R. S., and Alonso, D. 2006. Neutral community theory: how stochasticity and dispersal limitation can explain species coexistence. Journal of Statistical Physics 128:485510.Google Scholar
Etienne, R. S., and Olff, H. 2004a. A novel genealogical approach to neutral biodiversity theory. Ecology Letters 7:170175.Google Scholar
Etienne, R. S. 2004b. How dispersal limitation shapes species-body size distributions in local communities. American Naturalist 163:6983.CrossRefGoogle ScholarPubMed
Finnegan, S., and Droser, M. L. 2008. Reworking diversity: effects of storm deposition on evenness and sampled richness, Ordovician of the Basin and Range, Utah and Nevada, USA. Palaios 23:8796.Google Scholar
Flessa, K. W., and Kowalewski, M. 1994. Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. Lethaia 27:153165.Google Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.CrossRefGoogle Scholar
Fridley, J. D., Peet, R. K., van der Maarel, E., and Willems, J. H. 2006. Integration of local and regional species-area relationships from space-time species accumulation. American Naturalist 168:133143.Google Scholar
Fürsich, F. T. 1978. Influence of faunal condensation and mixing on preservation of fossil benthic communities. Lethaia 11:243250.Google Scholar
Fürsich, F. T., and Aberhan, M. 1990. Significance of time-averaging for paleocommunity analysis. Lethaia 23:143152.Google Scholar
Fürsich, F. T., and Kaufmann, E. G. 1984. Palaeoecology of marginal marine sedimentary cycles in the Albian Bear River Formation of south-western Wyoming. Palaeontology 27:501536.Google Scholar
Gaston, K. J., Blackburn, T. M., and Lawton, J. H. 1997. Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology 66:579601.Google Scholar
Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M., and Lawton, J. H. 2000. Abundance-occupancy relationship. Journal of Applied Ecology 37(Suppl. 1):3959.Google Scholar
Gaston, K. J., Evans, K. L., and Lennon, J. J. 2007. The scaling of spatial turnover: pruning the thicket. Pp. 181222 in Storch, et al. 2007.Google Scholar
Gotelli, N. J., and McGill, B. J. 2005. Null versus neutral models: what's the difference? Ecography 29:793800.Google Scholar
Gray, J. S., Bjogesaerter, A., and Ugland, K. I. 2005. The impact of rare species on natural assemblages. Journal of Animal Ecology 74:11311139.Google Scholar
Green, J. L., and Plotkin, J. B. 2007. A statistical theory for sampling species abundances. Ecology Letters 10:10371045.Google Scholar
Haegeman, B., and Etienne, R. S. 2009. Neutral models with generalized speciation. Bulletin of Mathematical Biology 71:15071519.Google Scholar
Hanski, I. 1982. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210221.Google Scholar
Harte, J., and Kinzig, A. P. 1997. On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos 80:417427.Google Scholar
Harte, J., Conlisk, E., Ostling, A., Green, J. L., and Smith, A. B. 2005. A theory of spatial structure in ecological communities at multiple spatial scales. Ecological Monographs 75:179197.Google Scholar
Harte, J., Smith, A. B., and Storch, D. 2009. Biodiversity scales from plots to biomes with a universal species-area curve. Ecology Letters 12:789797.CrossRefGoogle ScholarPubMed
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
He, F., and Condit, R. 2007. The distribution of species: occupancy, scale, and rarity. Pp. 3250 in Storch, et al. 2007.Google Scholar
He, F., and Hu, X.-S. 2005. Hubbell's fundamental biodiversity parameter and the Simpson diversity index. Ecology Letters 8:386390.Google Scholar
He, F., and Legendre, P. 2002. Species diversity patterns derived from species-area models. Ecology 83:11851198.Google Scholar
He, F., Gaston, K. W., and Wu, J. 2002. On species occupancy-abundance models. Écoscience 9:119126.Google Scholar
Hendy, A. J. W., and Kamp, P. J. J. 2004. Late Miocene to early Pliocene biofacies of Wanganui and Taranaki Basins, New Zealand: Applications to paleoenvironmental and sequence stratigraphic analysis. New Zealand Journal of Geology and Geophysics 47:769785.Google Scholar
Hill, M. O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54:427432.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 1999. Models for simulating the fossil record. Geology 27:491494.Google Scholar
Holyoak, M., Leibold, M. A., Mouquet, N., Holt, R. D., and Hoopes, M. F. 2005. Metacommunities: a framework for large-scale community ecology. Pp. 131 in Holyoak, M., Leibold, M. A., and Holt, R. D., eds. Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago.Google Scholar
Holyoak, M., Leibold, M. A., and Holt, R. D., eds. 2005. Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago.Google Scholar
Horn, H. S. 1966. Measurement of “overlap” in comparative ecological studies. American Naturalist 100:419424.Google Scholar
Horton, B. P., and Murray, J. W. 2006. Patterns in cumulative increase in live and dead species from foraminiferal time series of Cowpen Marsh, Tees Estuary, UK: implications for sea-level studies. Marine Micropaleontology 58:287315.Google Scholar
Houlahan, J. E., Currie, D. J., Cottenie, K., Cumming, G. S., Ernest, S. K. M., Findlay, C. S., Fuhlendorf, S. D., Gaedke, U., Legendre, P., Magnuson, J. J., McArdle, B. H., Muldavin, E. H., Noble, D., Russell, R., Stevens, R. D., Willis, T. J., Woiwod, I. P., and Wondzell, S. M. 2007. Compensatory dynamics are rare in natural ecological communities. Proceedings of the National Academy of Sciences USA 104:32733277.Google Scholar
Hubbell, S. P., 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J. Google Scholar
Johnson, R. G. 1960. Models and methods for the analysis of the mode of formation of fossil assemblages. Geological Society of America Bulletin 71:10751086.CrossRefGoogle Scholar
Johnson, K. G., Todd, J. A., and Jackson, J. B. C. 2007. Coral reef development drives molluscan diversity increase at local and regional scales in the late Neogene and Quaternary of the southwestern Caribbean. Paleobiology 33:2452.Google Scholar
Jost, L. 2006. Entropy and diversity. Oikos 113:363375.CrossRefGoogle Scholar
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:24272439.Google Scholar
Kidwell, S. M. 1997. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977995.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundances. Geology 30:803806.Google Scholar
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:1770117706.Google Scholar
Kidwell, S. M. 2008. Ecological fidelity of open marine molluscan death assemblages: effects of post-mortem transportation, shelf health, and taphonomic inertia. Lethaia 41:199217.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. In Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9:115209. Plenum, New York.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or destruction? Geology 22:11391143.Google Scholar
Kidwell, S. M., Best, M. M. R., and Kaufmann, D. S. 2005. Taphonomic trade-offs in tropical marine death assemblages: Differential time-averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729732.Google Scholar
Koleff, P., Gaston, K. J., and Lennon, J. J. 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72:367382.Google Scholar
Kosnik, M. A., and Wagner, P. J. 2006. Effect of taxon abundance distributions on expected numbers of sampled taxa. Evolutionary Ecology Research 8:195211.Google Scholar
Kosnik, M. A., Hua, Q., Jacobsen, G. E., Kaufman, D. S., and Wüst, R. A. 2007. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment. Geology 35:811814.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. Barbour, and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Krause, R. A. Jr., Barbour, S. L., Kowalewski, M., Kaufman, D. S., Romanek, C. S., Simões, M. G., and Wehmiller, J. F. 2010. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428452.Google Scholar
Kurka, P., Šizling, A. L., and Rosindell, J. 2010. Analytical evidence for scale-invariance in the shape of species abundance distributions. Mathematical Biosciences 223:151159.Google Scholar
Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142:911927.Google Scholar
Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., and Gonzalez, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601613.Google Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:19431967.Google Scholar
Lockwood, R., and Chastant, L. R. 2006. Quantifying taphonomic bias of compositional fidelity, species richness, and rank abundance in molluscan death assemblages in from the upper Chesapeake Bay. Palaios 21:376383.Google Scholar
Loehle, C. 1990. Proper statistical treatment of species-area data. Oikos 57:143145.Google Scholar
Loreau, M., and de Mazancourt, C. 2008. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. American Naturalist 172:E48E66.Google Scholar
Loreau, M., and Mouquet, N. 1999. Immigration and the maintenance of local species diversity. American Naturalist 154:427440.Google Scholar
Magurran, A. E. 2007. Species abundance distributions over time. Ecology Letters 10:347354.CrossRefGoogle ScholarPubMed
Magurran, A. E., and Henderson, P. A. 2003. Explaining the excess of rare species in natural species abundance distributions. Nature 422:714716.CrossRefGoogle ScholarPubMed
Martin, R. E., Hippensteel, S. P., Nikitina, D., and Pizzuto, J. E. 2002. Artificial time-averaging of marsh foraminiferal assemblages: linking the temporal scales of ecology and paleoecology. Paleobiology 28:263277.Google Scholar
McGill, B. J. 2003. Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecology Letters 6:766773.Google Scholar
McGill, B. J., Hadly, E.A., and Maurer, B. A. 2005. Community inertia of Quaternary small mammal assemblages in North America. Proceedings of the National Academy of Sciences USA 102:1670116706.Google Scholar
McGlinn, D. J., and Palmer, M. W. 2009. Modeling the sampling effect in the species-time-area relationship. Ecology 90:836846.Google Scholar
McKinney, M. L., and Allmon, W. D. 1995. Metapopulations and disturbance: from patch dynamics to biodiversity dynamics. Pp. 123183 in Erwin, D. H. and Anstey, R., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
McKinney, M. L., and Frederick, D. 1999. Species-time curves and population extremes: ecological patterns in the fossil record. Evolutionary Ecology Research 1:641650.Google Scholar
Meldahl, K. H., Flessa, K. W., and Cutler, A. H. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.Google Scholar
Miller, A. I., and Cummins, H. 1990. A numerical model for the formation of fossil assemblages: estimating the amount of postmortem transport along environmental gradients. Palaios 5:303316.Google Scholar
Miller, A. I. 1993. Using numerical models to evaluate the consequences of time-averaging in marine fossil assemblages. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:150168. Paleontological Society, Knoxville, Tenn. Google Scholar
Mouquet, N., and Loreau, M. 2002. Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist 159:420426.Google Scholar
Mouquet, N. 2003. Community patterns in source-sink metacommunities. American Naturalist 162:544557.Google Scholar
Munoz, F., Couteron, P., and Ramesh, B. R. 2008. Beta diversity in spatially implicit neutral models: a new way to assess species migration. American Naturalist 172:116127.Google Scholar
Murray, J. W. 2003. Patterns in the cumulative increase in species from foraminiferal time-series. Marine Micropalaeontology 48:121.Google Scholar
Nee, S., Gregory, R. D., and May, R. R. 1991. Core and satellite species: theory and artefacts. Oikos 62:8387.Google Scholar
Olszewski, T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.Google Scholar
Olszewski, T. D., and Kidwell, S. M. 2007. The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:123.Google Scholar
Palmer, M. W., and White, P. S. 1994. Scale dependence and the species-area relationship. American Naturalist 144:717740.Google Scholar
Pandolfi, J. M. 1996. Limited membership in Pleistocene coral reef assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152176.Google Scholar
Pech, D., Ardisson, P.-L., Bourget, E., and Condal, A. R. 2007. Abundance variability of benthic intertidal species: effects of changing scale on patterns perception. Ecography 30:637648.Google Scholar
Peters, S. E. 2004. Evenness of Cambrian-Ordovician benthic marine communities in North America. Paleobiology 30:325346.Google Scholar
Peterson, C. H. 1976. Relative abundances of living and dead mollusks in two Californian lagoons. Lethaia 9:137148.Google Scholar
Peterson, C. H. 1977. The paleoecological significance of undetected short-term temporal variability. Journal of Paleontology 51:976981.Google Scholar
Powell, E. N., and Cummins, H. 1985. Are molluscan maximum life spans determined by long-term cycles in benthic communities? Oecologia 67:177182.Google Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: Comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.Google Scholar
Preston, F. W. 1960. Time and space and the variation of species. Ecology 41:611627.Google Scholar
Purves, D. W., and Pacala, S. W. 2005. Ecological drift in niche-structured communities: neutral pattern does not imply neutral process. Pp. 107138 in Burslem, D., Pinard, M., and Hartley, S., eds. Bioric interactions in the Tropics. Cambridge University Press, Cambridge.Google Scholar
R Development Core Team. 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org Google Scholar
Ranta, E., Kaitala, V., Fowler, M. S., Laakso, J., Ruokolainen, L., and O'Hara, R. 2008. Detecting compensatory dynamics in competitive communities under environmental forcing. Oikos 117:19071911.Google Scholar
Ricklefs, R. E. 2007. History and diversity: explorations at the intersection of ecology and evolution. American Naturalist 170:S56S70.Google Scholar
Rosenzweig, M. L. 1998. Preston's ergodic conjecture: the accumulation of species in space and time. Pp. 311348 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics. Columbia University Press, New York.Google Scholar
Russell, G. J. 1998. Turnover dynamics across ecological and geological scales. Pp. 377404 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics. Columbia University Press, New York.Google Scholar
Sale, P. F. 1998. Appropriate spatial scales for studies of reef-fish ecology. Austral Ecology 23:202208.Google Scholar
Scarponi, D., and Kowalewski, M. 2007. Sequence stratigraphic anatomy of diversity patterns: Late Quaternary benthic mollusks of the Po Plain, Italy. Palaios 22:296305.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go. Paleobiology 14:221234.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding and the biological overprint. Pp. 298312 in Einsele, G., Ricken, W. and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
Šizling, A.L., Storch, D., Reif, J., and Gaston, K. J. 2009. Invariance in species-abundance distributions. Theoretical Ecology 2:89103.Google Scholar
Šizling, A.L., Storch, D., Šizlingová, E., Reif, J., and Gaston, K. J. 2009. Species abundance distribution results from a spatial analogy of central limit theorem. Proceedings of the National Academy of Sciences USA 106:66916695.Google Scholar
Staff, G. M., and Powell, E. N. 1988. The palaeoecological significance of diversity: the effect of time-averaging and differential preservation on macroinvertebrate species richness in death assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 63:7389.Google Scholar
Staff, G. M., Stanton, R. J. Jr., Powell, E. N., and Cummins, H. 1986. Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: death assemblages in Texas bays. Geological Society of America Bulletin 97:428443.Google Scholar
Storch, D., and Gaston, K. J. 2004. Untangling ecological complexity on different scales of space and time. Basic and Applied Ecology 5:389400.Google Scholar
Storch, D., Marquet, P. A. and Brown, J. H., eds. 2007. Scaling biodiversity. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Terry, R. C. 2008. Modeling the effects of predation, prey cycling, and time-averaging on relative abundance in raptor-generated small mammal death assemblages. Palaios 23:402410.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Tilman, D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences USA 101:1085410861.Google Scholar
Tj⊘rve, E. 2005. Shapes and functions of species-area curves: a review of possible models. Journal of Biogeography 30:827835.Google Scholar
Tomašových, A. 2006. Linking taphonomy to community-level abundance: insights into compositional fidelity of the Upper Triassic shell concentrations (Eastern Alps). Palaeogeography, Palaeoclimatology, Palaeoecology 235:355381.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009. Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha levels. Paleobiology 35:97121.Google Scholar
Tomašových, A. 2010. The effects of temporal resolution on species turnover and on testing metacommunity models. American Naturalist 175:587606.Google Scholar
Vasseur, D. A., and Fox, J. W. 2007. Environmental fluctuations can stabilize food web dynamics by increasing synchrony. Ecology Letters 10:10661074.Google Scholar
Volkov, I., Banavar, J. R., Hubbell, S. P., and Maritan, A. 2003. Neutral theory and relative species abundance in ecology. Nature 424:10351037.Google Scholar
Volkov, I. 2007. Patterns of relative species abundance in rainforests and coral reefs. Nature 450:4549.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Webber, A. J. 2005. The effects of spatial patchiness on the stratigraphic signal of biotic composition (Type Cincinnatian Series; Upper Ordovician). Palaios 20:3750.Google Scholar
White, E. P. 2004. Two-phase species-time relationships in North American land birds. Ecology Letters 7:329336.Google Scholar
White, E. P. 2007. Spatiotemporal scaling of species richness: patterns, processes, and implications. Pp. 325346 in Storch, et al. 2007.Google Scholar
White, E. P., Adler, P. B., Lauenroth, W. K., Gill, R. A., Greenberg, D., Kaufmann, D. M., Rassweiler, A., Rusak, J. A., Smith, M. D., Steinbeck, J. R., Waide, R. B., and Yao, J. 2006. A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos 112:185195.Google Scholar
Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385397.Google Scholar
Williamson, M., Gaston, K. J., and Lonsdale, W. M. 2001. The species-area relationship does not have an asymptote! Journal of Biogeography 28:827830 Google Scholar
Wilson, J. B., Gitay, H., Steel, J. B., and King, W. M. 1998. Relative abundance distributions in plant communities: effects of species richness and of spatial scale. Journal of Vegetation Science 9:213220.Google Scholar
Zillio, T., and Condit, R. 2007. The impact of neutrality, niche differentiation and species input on diversity and abundance distributions. Oikos 116:931940.Google Scholar
Zillio, T., and He, F. 2010. Inferring species abundance distribution across spatial scales. Oikos 119:7180.Google Scholar
Zuschin, M., Harzhauser, M., and Sauermoser, K. 2006. Patchiness of local species richness and its implication for large-scale diversity patterns: an example from the middle Miocene of Paratethys. Lethaia 39:6580.Google Scholar
Supplementary material: File

Tomašových and Kidwell supplementary material

Supplementary Table S1

Download Tomašových and Kidwell supplementary material(File)
File 425 KB
Supplementary material: File

Tomašových and Kidwell supplementary material

Supplementary Material

Download Tomašových and Kidwell supplementary material(File)
File 10.6 KB