Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T21:34:12.205Z Has data issue: false hasContentIssue false

Patterns of evolutionary tempo and mode in the radiation of Melanopsis (Gastropoda; Melanopsidae)

Published online by Cambridge University Press:  08 April 2016

Dana H. Geary*
Affiliation:
Department of Geology and Geophysics, 1215 West Dayton Street, University of Wisconsin, Madison, Wisconsin 53706

Abstract

The Paratethyan basins of eastern Europe and western Asia became isolated from marine influence in the Late Miocene, and were the sites of several remarkable endemic radiations of brackish and freshwater organisms. Here I describe the patterns of tempo and mode before and during the radiation of the gastropod Melanopsis in the Pannonian basin of eastern and central Europe, and I explore the underlying mechanisms of evolutionary change.

The most ancient melanopsid species in this area, M. impressa, was present in freshwater areas marginal to the basin well before the radiation. Widely spaced samples of M. impressa indicate that this species underwent a period of stasis lasting at least 7 m.y. The end of stasis corresponded with the extinction of the last of the normal marine fauna in the basin, suggesting that the lack of other fauna and/or reduced salinity in the basin permitted expansion of the melanopsids from the basin margins into the basin proper. Stasis ended with the onset of changes in size, shouldering, and ontogeny, which led eventually to M. fossilis. Change occurred over a 2-m.y. interval; a series of intermediates is present for all three characters. Within-sample correlations provide no evidence that the three characters are constructionally linked; instead they appear to be changing independently. The mode of change in the M. impressa–M. fossilis lineage appears to have been anagenetic. Alterations in the rate and direction of selection (and/or genetic links between characters) are probably required to explain the overall slowness of the change.

Most Pannonian basin melanopsid species arose by rapid cladogenesis in the Middle Pannonian Stage. Physical factors in the basin probably influenced the timing of this diversification; contrasting patterns of variation and diversity between two melanopsid clades suggest that intrinsic factors influenced the extent of diversification.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baldi, T. 1968. On the position of the stages of the European Neogene. Földtani Közlöni 98:285289.Google Scholar
Baldi, T. 1969. On the Oligocene/Miocene stages of the Middle Paratethys area and the Egerian formations in Hungary. Annates Universite Science, Eötvös 12:1928.Google Scholar
Bartha, F., Kleb, B., Körössy, L., Szabóné Kilényi, E., Szatmári, P., Széles, M., Szénás, G., and Tóth, D. 1971. A Magyarországi Pannonkori Képzödmények Kutatásai. Akadémiai Kiadó; Budapest.Google Scholar
Bérczi, I., Hámor, G., Jámbor, Á., and Szentgyörgyi, K. 1988. Neogene sedimentation in Hungary. American Association of Petroleum Geologists Memoir 45:5767.Google Scholar
Chaline, J., and Laurin, B. 1986. Phyletic gradualism in a European Plio-Pleistocene Mimomys lineage (Arvicolidae, Rodentia). Paleobiology 12:203216.Google Scholar
Charlesworth, B. 1984. The cost of phenotypic evolution. Paleobiology 10:319327.Google Scholar
Charlesworth, B., Lande, R., and Slatkin, M. 1982. A neo-Darwinian commentary on macroevolution. Evolution 36:474498.Google Scholar
Cheetham, A. H., and Hayek, L. C. 1988. Phylogeny reconstruction in the Neogene bryozoan Metrarabdotos: a paleontologic evaluation of methodology. Historical Biology 1:6584.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman Cooper and Company; San Francisco.Google Scholar
Fortey, R. A. 1985. Gradualism and punctuated equilibria as competing and complementary theories. Special Papers in Palaeontology 33:1728.Google Scholar
Fortey, R. A., and Jefferies, R. P. S. 1982. Fossils and phylogeny—a compromise approach. Pp. 197234. In Joysey, K. A., and Friday, A. E. (eds.), Problems of Phylogenetic Reconstruction. Systematics Association Special Volume No. 21. Academic Press; London.Google Scholar
Geary, D. H. 1986. The evolutionary radiation of melanopsid gastropods in the Pannonian Basin (Late Miocene, Eastern Europe). Unpublished Ph.D. dissertation, Harvard University, Cambridge, Massachusetts.Google Scholar
Geary, D. H. 1987. Evolutionary tempo and mode in a sequence of the Upper Cretaceous bivalve Pleuriocardia. Paleobiology 13:140151.Google Scholar
Geray, D. H. 1988. Heterochrony in gastropods: a paleontological view. Pp. 183196. In McKinney, M. L. (ed.), Heterochrony in Evolution: A Multidisciplinary Approach. Plenum Press; New York.Google Scholar
Geary, D. H. 1990. Evaluating intrinsic and extrinsic factors in the evolution of Melanopsis in the Pannonian basin. Pp. 305321. In Ross, R. M., and Allmon, W. D. (eds.), Causes of Evolution, a Paleontological Perspective. University of Chicago Press; Chicago.Google Scholar
Geary, D. H., Rich, J. A., Valley, J. W., and Baker, K. 1989. Isotopic evidence for salinity changes in the Late Miocene Pannonian basin: effects on the evolutionary radiation of melanopsid gastropods. Geology 17:981985.Google Scholar
Gillet, S. 1946. Lamellibranches dulcicoles, les limnocardiides. Paris Review Scientifique 84:343353.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science 276:128.Google Scholar
Gingerich, P. D. 1985. Species in the fossil record: concepts, trends, and transitions. Paleobiology 11:2741.Google Scholar
Godinot, M. 1985. Evolutionary implications of morphological changes in Palaeogene primates. Special Papers in Paleontology 33:3948.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Gould, S. J. 1984a. Morphological channeling by structural constraint: convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on the discovery of the largest Cerion. Paleobiology 10:172194.Google Scholar
Gould, S. J. 1984b. Covariance sets and ordered geographic variation in Cerion from Aruba, Bonaire and Curacao: a way of studying nonadaptation. Systematic Zoology 33:217237.Google Scholar
Hallam, A. 1978. How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiology 4:1625.Google Scholar
Jámbor, Á. 1971. A magyarországi szarmata. Földtani Közlöni 101:103106.Google Scholar
Jekelius, E. 1944. Sarmat und Pont von Soceni (Banat). Imprimeria Naţionalǎ; Bucureşti.Google Scholar
Jiřiček, R. 1974. Neogene Zonationen der Paratethys nach Ostracoden. Slovakien Akademie Wissenschaft; Bratislava and Erdolbetrieben Geologisches Abteilungen.Google Scholar
Jiřiček, R., and Tomek, O. 1981. Sedimentary and structural evolution of the Vienna Basin. Earth Evolution Sciences 1:195204.Google Scholar
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus rema (Radiolaria). Paleobiology 1:359370.Google Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314334.Google Scholar
Lande, R. 1985. Expected time for random genetic drift of a population between stable phenotypic states. Proceedings of the National Academy of Sciences USA 82:76417645.Google Scholar
Lande, R. 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiology 12:343354.Google Scholar
Lörenthey, E. 1902. Die Pannonische Fauna von Budapest. Separat Abdruck aus Palaeontographica 48.Google Scholar
McKinney, M. L. 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. Paleobiology 12:282289.Google Scholar
Nagymarosy, A. 1981. Chrono- and biostratigraphy of the Pannonian Basin: a review based mainly on data from Hungary. Earth Evolution Sciences 1:183194.Google Scholar
Nagymarosy, A., and Müller, P. 1988. Some aspects of Neogene biostratigraphy in the Pannonian Basin. American Association of Petroleum Geologists Memoir 45:6978.Google Scholar
Newman, C. M., Cohen, J. E., and Kipnis, D. 1985. Neo-Darwinian evolution implies punctuated equilibria. Nature 315:400401.Google Scholar
Ozawa, T. 1975. Evolution of Lepidolina multiseptata (Permian foraminifera) in east Asia. Memoirs of the Faculty of Science, Kyushu University, Series D Geology 23:117164.Google Scholar
Papp, A. 1951. Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien 39:3941, 99–193.Google Scholar
Papp, A. 1954. Die Molluskenfauna im Sarmat des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien 45:1112.Google Scholar
Papp, A. 1985. Die Mollusken-Fauna des Pannonien der Zentralen Paratethys, Allgemeine Bemerkungen. Pp. 274339. In Papp, A., Jámbor, Á., and Steininger, F. F. (eds.), Chronostratigraphie under Neostratotypen, 7, M6 Pannonien (Slavonien und Serbien). Akademiai Kiado; Budapest.Google Scholar
Papp, A., Grill, R., Janoschek, R., Kapounek, J., Kollmann, K., and Turnovsky, K. 1968. Nomenclature of the Neogene of Austria. Verhandlungen Geologisches Bundesanstalt 1968:1927.Google Scholar
Papp, A., Marinescu, F., and Senes, J. 1974. Chronostratigraphie und Neostratotypen, Miozan der Zentralen Paratethys, Bild IV, M5 Sarmatien. Verlag der Slowakischen Akademie der Wissenschaften; Bratislava.Google Scholar
Papp, A., Jámbor, Å., and Steininger, F. F. 1985. Chronostratigraphie und Neostratotypen, Miozan der Zentralen Paratethys, Bild VI, M6 Pannonien (Slavonien und Serbien). Akademiai Kiado; Budapest.Google Scholar
Rögl, F., and Steininger, F. F. 1983. Vom Zerfall der Tethys zu Mediterran und Paratethys. Die neogene Palaogeographie und Palinspastik des Zirkum-Mediterranen Raumes. Annals der Naturhistoriches Museum Wien 85/A:135163.Google Scholar
Rudenic, R., Tomek, Č., and Jiřiček, R. 1981. Sedimentary and structural evolution of the Transcarpathian Depression. Earth Evolution Sciences 1:205211.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry. W. H. Freeman and Company; San Francisco.Google Scholar
SPSS-x. User's Guide. 1983. SPSS Incorporated, and McGraw-Hill Book Company; New York.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman and Company; San Francisco.Google Scholar
Stanley, S. M., and Yang, X. 1987. Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology 13:113139.Google Scholar
Steininger, F. F., and Papp, A. 1979. Current biostratigraphic and radiometric correlations of late Miocene central Paratethys stages (Sarmatian s. str., Pannonian s. str., and Pontian) and Mediterranean stages (Tortonian and Messian) and the Messinian event in the Paratethys. Newsletter Stratigraphique 8:100110.Google Scholar
Steininger, F. F., and Rögl, F. 1979. The Paratethys history—a contribution towards the Neogene geodynamics of the Alpine orogene (an abstract). Annales Géologique Pays Hellenes 3:11531165.Google Scholar
Steininger, F. F., and Rögl, F. 1985. Die Paläogeographie der Zentralen Paratethys im Pannonien. Pp. 4656. In Papp, A., Jámbor, Á., and Steininger, F. F. (eds.), Chronostratigraphie und Neostratotypen, Miozan der Zentralen Paratethys, Bild VI, M6 Pannonien (Slavonien und Serbien). Akademiai Kiado; Budapest.Google Scholar
Steininger, F. F., Müller, C., and Rögl, F. 1988. Correlation of central Paratethys, eastern Paratethys, and Mediterranean Neogene stages. American Association of Petroleum Geologists Memoir 45:7987.Google Scholar
Sümeghy, J. 1939. Zusammenfassender Bericht uber die Pannonischen Ablagerungen des Gyorer Beckens, Transdanubiens und des Alfold. Mitteilungen Jahrbuch Kugeln Ungarisches Anstalt. 32, (2).Google Scholar
Templeton, A. R. 1982. Adaptation and the integration of evolutionary forces. Pp. 1531. In Milkman, R. (ed.), Perspectives on Evolution. Sinauer Associates; Sunderland, Massachusetts.Google Scholar
Van Valen, L. M. 1982. Integration of species: stasis and biogeography. Evolutionary Theory 6:99112.Google Scholar
Whatley, R. C. 1985. Evolution of the ostracods Bradleya and Poseidonamicus in the deep-sea Cainozoic of the south-west Pacific. Special Papers in Paleontology 33:103115.Google Scholar
Wilkinson, L. 1988. SYSTAT: The System for Statistics. SYSTAT, Inc.; Evanston, Illinois.Google Scholar
Williamson, P. G. 1981a. Paleontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature 293:437443.Google Scholar
Williamson, P. G. 1981b. Morphological stasis and developmental constraint: real problems for neo-Darwinism. Nature 294:214215.Google Scholar
Williamson, P. G. 1987. Selection or constraint?: a proposal on the mechanism for stasis. Pp. 129142. In Campbell, K. S. W., and Day, M. F. (eds.), Rates of Evolution. Allen and Unwin; Winchester, Massachusetts.Google Scholar
Wright, S. 1982. Character change, speciation, and the higher taxa. Evolution 36:427443.Google Scholar