Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T18:16:45.588Z Has data issue: false hasContentIssue false

Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida)

Published online by Cambridge University Press:  08 April 2016

Rich Mooi*
Affiliation:
NHB-163, Department of Invertebrate Zoology, Smithsonian Institution, Washington, D.C. 20560

Abstract

Convincing hypotheses of the origin of major invertebrate groups are difficult to make in the absence of phylogenetic analyses. In spite of this, several scenarios exist for the origin of the unusual echinoid order Clypeasteroida. I expand upon the most probable of these models by performing a phylogenetic analysis on three clypeasteroid suborders, the enigmatic fossil genus Togocyamus, and the extinct Oligopygoida. This analysis shows that the oligopygoids are the sister group of the Clypeasteroida plus Togocyamus. The latter is here considered a plesion (extinct sister group) to the crown group Clypeasteroida. Within that order, the suborder Clypeasterina is the sister group to the Laganina plus Scutellina. A new classification of all these taxa is presented. The phylogeny is based on 47 characters and incorporates data on external appendages, Aristotle's lantern anatomy, and test structure of irregular echinoids, as well as new information on the morphology of Togocyamus. The earliest clypeasteroids had a lantern similar to that of adult oligopygoids, which in turn inherited their lantern from a cassiduloid-like ancestor that retained the lantern into adulthood. This lantern is absent in adult cassiduloids. Subsequent changes, including modification of the lantern into a crushing mill, extreme flattening of the test, and proliferation of food-gathering tube feet have allowed clypeasteroids to become epifaunal inhabitants of environments characterized by fine, shifting substrates, a habitat previously inaccessible to most other irregular echinoids.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adegoke, O. S. 1977. Stratigraphy and paleontology of the Ewekoro Formation (Paleocene) of southwestern Nigeria. Bulletins of American Paleontology, 71:1379.Google Scholar
Agassiz, A. 1872–1874. Revision of the Echini. Memoirs of the Museum of Comparative Zoology 3:383762.Google Scholar
Barron, E. J., Harrison, C. G. A., Sloan, J. L. II, and Hay, W. W. 1981. Paleogeography, 180 million years ago to the present. Eclogae Geologicae Helvetiae 74:443470.Google Scholar
Carter, B. D., Beisel, T. H., Branch, W. B., and Mashburn, C. M. 1989. Substrate preferences of Late Eocene (Priabonian/Jacksonian) echinoids of the eastern Gulf Coast. Journal of Paleontology 63.:495503.CrossRefGoogle Scholar
Clark, H.L. 1914. Hawaiian and other Pacific Echini. The Clypeasteridae, Arachnoididae, Laganidae, Fibulariidae, and Scutellidae. Memoirs of the Museum of Comparative Zoology 46:180.Google Scholar
Durham, J. W. 1955. Classification of clypeasteroid echinoids. California University Publications in Geological Science 31:73198.Google Scholar
Durham, J. W. 1966. Clypeasteroids. Pp. 450491. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. The Geological Society of America and the University of Kansas; Boulder, Colorado, and Lawrence, Kansas.Google Scholar
Durham, J. W., and Melville, R. V. 1957. A classification of echinoids. Journal of Paleontology 31:242272.Google Scholar
Gladfelter, W. B. 1978. General ecology of the cassiduloid urchin Cassidulus caribbearum. Marine Biology 47:149160.Google Scholar
Higgins, R. C. 1974. Observations on the biology of Apatopygus recens (Echinoidea: Cassiduloida) around New Zealand. Journal of Zoology 173:505516.Google Scholar
Jensen, M. 1981. Morphology and classification of Euechinoidea Bronn, 1860—a cladistic analysis. Videnskabelige Meddelelsar Dansk Naturhistoriske Forening i Kjobenhavn 143:799.Google Scholar
Kier, P. M. 1962. Revision of the cassiduloid echinoids. Smithsonian Miscellaneous Collections 144:1262.Google Scholar
Kier, P. M. 1967. Revision of the oligopygoid echinoids. Smithsonian Miscellaneous Collections 152:1149.Google Scholar
Kier, P. M. 1968. Echinoids from the Middle Eocene Lake City Formation of Georgia. Smithsonian Miscellaneous Collections 153:145.Google Scholar
Kier, P. M. 1970. Lantern support structures in the clypeasteroid echinoids. Journal of Paleontology 44:98109.Google Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Journal of Paleontology 48(suppl. 5):195.Google Scholar
Kier, P. M. 1975. The echinoids of Carrie Bow Cay, Belize. Smithsonian Contributions to Zoology 206:145.Google Scholar
Kier, P. M. 1980. The echinoids of the Middle Eocene Warley Hill Formation, Santee Limestone, and Castle Hayne Limestone of North and South Carolina. Smithsonian Contributions to Paleobiology 39:1102.CrossRefGoogle Scholar
Kier, P. M. 1982. Rapid evolution in echinoids. Paleontology 25:19.Google Scholar
Lovén, S. 1892. Echinologica. Bihang Till Kongliga Svenska Vetenskaps-Akademiens Handlingar 18:174.Google Scholar
Märkel, K. 1978. On the teeth of the Recent cassiduloid Echino-lampas depressa Gray, and on some Liassic fossil teeth nearly identical in structure (Echinodermata, Echinoidea). Zoomorphologie 89:125144.Google Scholar
Mooi, R. 1986a. Non-respiratory podia of clypeasteroids (Echinodermata, Echinoides): I. Functional anatomy. Zoomorphology 106:2130.CrossRefGoogle Scholar
Mooi, R. 1986b. Non-respiratory podia of clypeasteroids (Echinodermata, Echinoides): II. Diversity. Zoomorphology 106:7590.CrossRefGoogle Scholar
Mooi, R. 1986c. Structure and function of clypeasteroid miliary spines (Echinodermata, Echinoides). Zoomorphology 106:221223.Google Scholar
Mooi, R. 1987. A Cladistic Analysis of the Sand Dollars (Clypeasteroida: Scutellina) and the Interpretation of Heterochronic Phenomena. Unpublished Ph.D. dissertation, University of Toronto. Toronto, Ontario.Google Scholar
Mooi, R. 1989. Living and fossil genera of the Clypeasteroida (Echinoidea: Echinodermata): an illustrated key and annotated checklist. Smithsonian Contributions to Zoology 488:151.CrossRefGoogle Scholar
Mooi, R.In press. Progenetic miniaturization in the sand dollar Sinaechinocyamus: implications for clypeasteroid phylogeny. Proceedings of the second European Colloquium on Echinoderms, September 1989.Google Scholar
Mortensen, T. 1948. A monograph of the Echinoidea. IV. 2. Clypeasteroida. C. A. Reitzel; Copenhagen.Google Scholar
Phelan, T. H. 1977. Comments on the water vascular system, food grooves, and ancestry of the clypeasteroids. Bulletin of Marine Science 27:400422.Google Scholar
Philip, G. M. 1965. Classification of echinoids. Journal of Paleontology 39:4562.Google Scholar
Philip, G. M., and Foster, R. J. 1971. Marsupiate Tertiary echinoids from south-eastern Australia and their zoogeographic significance. Palaeontology 14:666695.Google Scholar
Rose, E. P. F. 1978. Some observations on the Recent holectypoid echinoid Echinoneus cyclostomus and their palaeoecological significance. Thalassia Jugoslavica 12:299306.Google Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology 5:191221.Google Scholar
Smith, A. B. 1978. A comparative study of the life style of two Jurassic irregular echinoids. Lethaia 11:5766.Google Scholar
Smith, A. B. 1981. Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology 24:779801.Google Scholar
Smith, A. B. 1984a. Classification of the Echinodermata. Palaeontology 27:431459.Google Scholar
Smith, A. B. 1984b. Echinoid Paleobiology. George Allen and Unwin; London.Google Scholar
Smith, A. B. 1988a. Phylogenetic relationship, divergence times, and rates of molecular evolution for camarodont sea urchins. Molecular Biology and Evolution 5:345365.Google Scholar
Smith, A. B. 1988b. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence. Pp. 8597. In Paul, C. R. C. and Smith, A. B. (eds.) Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press; Oxford.Google Scholar
Telford, M. 1981. A hydrodynamic interpretation of sand dollar morphology. Bulletin of Marine Science 31:605622.Google Scholar
Telford, M. 1983. An experimental analysis of lunule function in the sand dollar Mellita quinquiesperforata. Marine Biology 76:125134.Google Scholar
Telford, M., and Mooi, R. 1987. The art of standing still. New Scientist 1556:3035.Google Scholar
Telford, M., Harold, A. S., and Mooi, R. 1983. Feeding structures, behavior, and microhabitat of Echinocyamus pusillus (Echinoidea: Clypeasteroida). Biological Bulletin 165:745757.Google Scholar
Telford, M., Mooi, R., and Ellers, O. 1985. A new model of podial deposit feeding in the sand dollar, Mellita quinquiesperforata (Leske): the sieve hypothesis challenged. Biological Bulletin 169:431448.Google Scholar
Telford, M., Mooi, R., and Harold, A. S. 1987. Feeding activities of two species of Clypeaster (Echinoides, Clypeasteroida): further evidence of clypeasteroid resource partitioning. Biological Bulletin 172:324336.Google Scholar
Wang, C. C. 1984. New classification of clypeasteroid echinoids. Proceedings of the Geological Society of China 27:119152.Google Scholar
Wiley, E. O. 1981. Phylogenetics: The Theory and Practice of Phylogenetic Systematics. John Wiley and Sons; New York.Google Scholar