Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T05:29:03.063Z Has data issue: false hasContentIssue false

Extrapolating body masses in large terrestrial vertebrates

Published online by Cambridge University Press:  30 June 2017

Nicolás E. Campione*
Affiliation:
Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden. E-mail: nicolas.campione@geo.uu.se

Abstract

Despite more than a century of interest, body-mass estimation in the fossil record remains contentious, particularly when estimating the body mass of taxa outside the size scope of living animals. One estimation approach uses humeral and femoral (stylopodial) circumferences collected from extant (living) terrestrial vertebrates to infer the body masses of extinct tetrapods through scaling models. When applied to very large extinct taxa, extant-based scaling approaches incur obvious methodological extrapolations leading some to suggest that they may overestimate the body masses of large terrestrial vertebrates. Here, I test the implicit assumption of such assertions: that a quadratic model provides a better fit to the combined humeral and femoral circumferences-to-body mass relationship. I then examine the extrapolation potential of these models through a series of subsetting exercises in which lower body-mass sets are used to estimate larger sets. Model fitting recovered greater support for the original linear model, and a nonsignificant second-degree term indicates that the quadratic relationship is statistically linear. Nevertheless, some statistical support was obtained for the quadratic model, and application of the quadratic model to a series of dinosaurs provides lower mass estimates at larger sizes that are more consistent with recent estimates using a minimum convex-hull (MCH) approach. Given this consistency, a quadratic model may be preferred at this time. Still, caution is advised; extrapolations of quadratic functions are unpredictable compared with linear functions. Further research testing the MCH approach (e.g., the use of a universal upscaling factor) may shed light on the linear versus quadratic nature of the relationship between the combined femoral and humeral circumferences and body mass.

Type
Methods in Paleobiology
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrian, A. 2014. xlsx: read, write, format Excel 2007 and Excel 97/2000/XP/2003 files, Version 0.5.7. https://cran.r-project.org/web/packages/xlsx/index.html.Google Scholar
Alexander, R. M. 1985. Mechanics of posture and gait of some large dinosaurs. Zoological Journal of the Linnean Society 83:125.CrossRefGoogle Scholar
Anderson, J. F., Hall-Martin, A., and Russell, D. A.. 1985. Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of the Zoological Society of London A 207:5361.CrossRefGoogle Scholar
Andrej-Nikolai, S. 2014. qpcR: modelling and analysis of real-time PCR data, Version 1.4-0. https://cran.r-project.org/web/packages/qpcR/index.html.Google Scholar
Bates, K. T., Manning, P. L., Hodgetts, D., and Sellers, W. I.. 2009. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling. PLoS ONE 4:e4532. doi: 10.1371/journal.pone.0004532.Google Scholar
Bates, K. T., Falkingham, P. L., Macaulay, S., Brassey, C., and Maidment, S. C. R.. 2015. Downsizing a giant: re-evaluating Dreadnoughtus body mass. Biology Letters 11:20150215. doi: 10.1098/rsbl.2015.0215.Google Scholar
Bates, K. T., Mannion, P. D., Falkingham, P. L., Brusatte, S. L., Hutchinson, J. R., Otero, A., Sellers, W. I., Sullivan, C., Stevens, K. A., and Allen, V.. 2016. Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Royal Society Open Science 3:150636. doi: 10.1098/rsos.150636.Google Scholar
Benson, R. B. J., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P., and Evans, D. C.. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol 12:e1001853. doi: 10.1371/journal.pbio.1001853.Google Scholar
Brassey, C. A., and Sellers, W. I.. 2014. Scaling of Convex Hull Volume to Body Mass in Modern Primates, Non-Primate Mammals and Birds. PLoS ONE 9:e91691. doi: 10.1371/journal.pone.0091691.Google Scholar
Brassey, C. A., Maidment, S. C. R., and Barrett, P. M.. 2015. Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods. Biology Letters 11:20140984. doi: 10.1098/rsbl.2014.0984.Google Scholar
Campione, N. E., and Evans, D. C.. 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10:60. doi: 10.1186/1741-7007-10-60.CrossRefGoogle ScholarPubMed
Campione, N. E., Evans, D. C., Brown, C. M., and Carrano, M. T.. 2014. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods in Ecology and Evolution 5:913923. doi: 10.1111/2041-210X.12226.Google Scholar
Christiansen, P. 1998. Strength indicator values of theropod long bones, with comments on limb proportions and cursorial potential. Gaia 15:241255.Google Scholar
Colbert, E. H. 1962. The weights of dinosaurs. American Museum Novitates 2076:116.Google Scholar
Erickson, G. M., and Tumanova, T. A.. 2000. Growth curve of Psittacosaurus mongoliensis Orborn (Ceratopsia; Psittacosauridae) inferred from long bone histology. Zoological Journal of the Linnean Society 130:551566.CrossRefGoogle Scholar
Franz, R., Hummel, J., Kiensle, E., Kölle, P., Gunga, H.-C., and Clauss, M.. 2009. Allometry of visceral organs in living amniotes and its implications for sauropod dinosaurs. Proceedings of the Royal Society of London B 276:1731–1736. doi:10.1098/rspb.2008.1735.Google Scholar
Gould, S. J. 1965. Is uniformitarianism necessary? American Journal of Science 263:223228.Google Scholar
Gregory, W. K. 1905. The weight of Brontosaurus . Science, new series 22:572.Google Scholar
Gunga, H.-C., Suthau, T., Bellmann, A., Stoinski, S., Friedrich, A., Trippel, T., Kirsch, K., and Hellwich, O.. 2008. A new body mass estimation of Brachiosaurus brancai Janensch, 1914 mounted and exhibited at the Museum of Natural History (Berlin, Germany). Fossil Record 11:3338. doi: 10.1002/mmng.200700011.Google Scholar
Henderson, D. M. 1999. Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing. Paleobiology 25:88106.Google Scholar
Hutchinson, J. R., Bates, K. T., Molnar, J., Allen, V., and Makovicky, P. J.. 2011. A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth. PLoS ONE 6:e26037. doi: 10.1371/journal.pone.0026037.Google Scholar
Lacovara, K. J., Lamanna, M. C., Ibiricu, L. M., Poole, J. C., Schroeter, E. R., Ullmann, P. V., Voegele, K. K., Boles, Z. M., Carter, A. M., Fowler, E. K., Egerton, V. M., Moyer, A. E., Coughenour, C. L., Schein, J. P., Harris, J. D., Martínez, R. D., and Novas, F. E.. 2014. A Gigantic, Exceptionally Complete Titanosaurian Sauropod Dinosaur from Southern Patagonia, Argentina. Scientific Reports 4:6196. doi:10.1038/srep06196.Google Scholar
Makarieva, A., Gorshkov, M., V. G., and Li, B.-L.. 2005. Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proceedings of the Royal Society of London B 272:2325–2328. doi: 10.1098/rspb.2005.3223.Google Scholar
O’Gorman, E. J., and Hone, D. W. E.. 2012. Body size distribution of the dinosaurs. PLoS ONE 7:e51925. doi: 10.1371/journal.pone.0051925.CrossRefGoogle ScholarPubMed
Paradis, E. 2012. Analysis of phylogenetics and evolution with R. Springer, New York.Google Scholar
Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., Alfaro, M. E., and Harmon, L. J.. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30:22162218. doi: 10.1093/bioinformatics/btu181.Google Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.Google Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and Core Team, R. 2015. nlme: linear and nonlinear mixed effects models. Version 3:1122. https://cran.r-project.org/web/packages/nlme/index.html.Google Scholar
Pontzer, H., Allen, V., and Hutchinson, J. R.. 2009. Biomechanics of running indicates endothermy in bipedal dinosaurs. PLoS ONE 4:e7783. doi: 10.1371/journal.pone.0007783.Google Scholar
R Development Core Team. 2015. R: a language and environment for statistical computing, Version 3.2.3. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Sellers, W. I., Hepworth-Bell, J., Falkingham, P. L., Bates, K. T., Brassey, C. A., Egerton, V. M., and Manning, P. L.. 2012. Minimum convex hull mass estimations of complete mounted skeletons. Biology Letters 8:842845. doi: 10.1098/rsbl.2012.0263.CrossRefGoogle ScholarPubMed
Wilson, J. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:215275. doi: 10.1046/j.1096-3642.2002.00029.x.Google Scholar
Wilson, J. A., and Carrano, M. T.. 1999. Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25:252267.Google Scholar