Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T12:51:18.567Z Has data issue: false hasContentIssue false

Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece)

Published online by Cambridge University Press:  08 April 2016

Nikos Solounias
Affiliation:
Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568 Department of Paleontology, American Museum of Natural History, Central Park West at Seventy-Ninth Street, New York, New York 10024. E-mail: nsolouni@nyit.edu
Florent Rivals
Affiliation:
ICREA and Institut Català de Paleoecologia Humana i Evolució Social, Universitat Rovira i Virgili, Plaça Imperial Tarraco 1, 43005 Tarragona, Spain. E-mail: florent.rivals@icrea.es
Gina M. Semprebon
Affiliation:
Bay Path College, 588 Longmeadow Street, Longmeadow, Massachusetts 01106. E-mail: gsempreb@baypath.edu

Abstract

A large sample of the Pikermi and Samos ungulates was examined by microwear analysis using a light stereomicroscope (561 extinct and 809 extant comparative specimens). The results were used to infer the dietary adaptations of individual species and to evaluate the Pikermian Biome ungulate fauna. Many of the bovids have wear consistent with mixed feeding, although a few mesodont taxa apparently enjoyed an exclusive browsing and or grazing diet. The giraffids spanned the entire dietary spectrum of browsing, mixed feeding, and grazing, but most of the three-toed horses (Hippotherium) were hypsodont grazers. The colobine monkey Mesopithecus pentelici displays microwear consistent with a mixed fruit and leaf diet most likely including some hard objects. Similar results were obtained from prior scanning electron microscopy microwear studies at 500 times magnification and from the light microscope method at 35 times magnification for the same species. Results show that diet can differ between species that have very similar gross tooth morphology. Our results also suggest that the Pikermian Biome was most likely a woodland mosaic that provided a diversity of opportunities for species that depended on browsing as well as species that ate grass. The grasses were most likely C3 grasses that would grow in shaded areas of the woodland, glades, and margins of water. The ungulate component of the Pikermi and Samos fauna was more species-rich and more diverse in diet than the ungulates observed in modern African forests, woodlands, or savannas, yet dietarily most similar to the ungulates found in woodland elements of India and to some extent of Africa. It is unlikely that the Pikermi and Samos ungulates inhabited dense forests because we find no evidence for heavy fruit browsing. Conversely, a pure savanna is unlikely because many mixed feeders are present as well as browsers. Extant woodland African species are morphologically and trophically very similar to the African savanna species. Therefore the evolution of grazing and of hypsodont morphology for Africa may have evolved within the Plio-Pleistocene woodlands of Africa. Our results show that major dietary and morphologic ungulate evolution may take place within woodlands rather than as a consequence of species moving into savannas both during the late Miocene of Pikermi and Samos and during the Pleistocene–Recent of Central Africa.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberdi, M. T., Azanza, B., Cerdeño, E., and Prado, J. L. 1997. Similarity relationship between mammal fauna and biochronology from Latest Miocene to Pleistocene in the Western Mediterranean area. Eclogae Geologicae Helvetiae 90:115132.Google Scholar
Axelrod, I. D. 1975. Evolution and biogeography of the Madrean Tethyan sclerophyll vegetation. Annals of the Missouri Botanical Garden 62:280334.Google Scholar
Bernor, R. L., Woodburne, M., and Van Couvering, J. A. 1980. A contribution to the chronology of some Old World Miocene faunas based on hipparionine horses. Geobios 13:705739.Google Scholar
Bernor, R. L., Fahlbusch, V., and Mittmann, H.-W. 1996. The evolution of Western Eurasian Neogene faunas. Columbia University Press, New York.Google Scholar
Bruch, A. A., Utescher, T., Mosburugger, V., Gabrielyan, I., Ivanov, D. A. 2006. Late Miocene climate in the circum-Alpine realm—a quantitative analysis of terrestrial paleofloras. Palaeogeography, Palaeoclimatology, Palaeoecology 238:270280.CrossRefGoogle Scholar
Bruch, A. A., Uhl, D., Mosbrugger, V. 2007. Miocene climate in Europe—patterns and evolution: a first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology 253:17.Google Scholar
Deng, T. 2006. Paleoecological comparison between late Miocene localities of China and Greece based on Hipparion faunas. Geodiversitas 28:499516.Google Scholar
Dorofeyev, P. I. 1966. Flora of the Hipparion epoch. International Geological Reviews 8:11091117.Google Scholar
Escarguel, G. 2005. Mathematics and the lifeway of Mesopithecus . International Journal of Primatology 26:801823.Google Scholar
Fortelius, M. (coordinator). 2009. Neogene of the Old World Database of Fossil Mammals (NOW). University of Helsinki. http://www.helsinki.fi/science/now/ Google Scholar
Fortelius, M., and Solounias, N. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:136.2.0.CO;2>CrossRefGoogle Scholar
Fortelius, M., Kappleman, J., Sen, S., and Bernor, R. 2003. Geology and paleontology of the Miocene of Sinap Formation, Turkey. Columbia University Press, New York.Google Scholar
Franz-Odendaal, T. A., and Solounias, N. 2004. Comparative dietary evaluations of an extinct giraffid (Sivatherium hendeyi) (Mammalia, Giraffidae, Sivatheriinae) from Langebaanweg, South Africa (early Pliocene). Geodiversitas 26:675685.Google Scholar
Gaudry, A. 1862–1867. Animaux fossiles et géologie de l'Attique. Martinet, Paris.Google Scholar
Gentry, A. W. 1971. The earliest goats and other antelopes from the Samos Hipparion fauna. Bulletin of the British Museum of Natural History (Geology) 20:231296.Google Scholar
Geraads, D. 1988. Revision des Rhinocerotinae (Mammalia) du Turolien de Pikermi. Comparaison avec les formes voisines. Annales de Paléontologie 74:1341.Google Scholar
Godfrey, L. R., Semprebon, G. M., Jungers, W. L., Sutherland, M. R., Simons, E., and Solounias, N. 2004. Dental use wear in extinct lemurs: evidence of diet and niche differentiation. Journal of Human Evolution 47:145169.Google Scholar
Guernet, C., Keraudren, B., and Sauvage, J. 1976. La série “Levantine” du Cap Phocas (Île de Kos, Dodécanaise, Grèce): Stragigraphie, palynologie, et paléoécologie. Revue de Micropaléontologie 19:6173.Google Scholar
Hayek, L.-A., Bernor, R. L., Solounias, N., and Steigerwald, P. 1992. Preliminary studies of hipparionine horse diet as measured by tooth microwear. Annales Zoologici Fennici 28:187200.Google Scholar
Ioakim, C., and Solounias, N. 1985. A radiometrically dated pollen flora from the Upper Miocene of Samos Island, Greece. Revue de Micropaléontologie 28:197204.Google Scholar
Ioakim, C., Rondoyanni, T., and Mettos, A. 2005. The Miocene basins of Greece (Eastern Mediterranean) from a paleoclimatic perspective. Revue de Paléobiologie 24:735748.Google Scholar
Jacobs, B. F., Kingston, J. D., and Jacobbs, L. L. 1999. The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden 86:590643.CrossRefGoogle Scholar
Janis, C. 1988. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. In Russell, D. E., Santoro, J. P., and Sigogneau-Russell, D., eds. Teeth revisited. Proceedings of the VIIth International symposium on dental morphology. Mémoires du Muséum National d'Histoire Naturelle, série C, 53:367387.Google Scholar
Kohler-Rollefson, I. 1991. Camelus dromedarius . Mammalian Species 375:18.CrossRefGoogle Scholar
Kostopoulos, D. S. 2009. The Pikermian Event: Temporal and spatial resolution of the Turolian large mammal fauna in SE Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 274:8295.Google Scholar
Kostopoulos, D. S., Sen, S., and Koufos, G. 2003. Magnetostratigraphy and revised chronology of the late Miocene mammal localities of Samos, Greece. International Journal Earth Science 92:779794.CrossRefGoogle Scholar
Koufos, G., Syrides, G., Kostopoulos, D. S., Koliadimou, K. K., Sylvestrou, I., Stefanides, G., and Vlachou, D. 1997. New excavations in the Neogene mammalian localities of Mytilinii Samos Island, Greece. Geodiversitas 19:877–844.Google Scholar
Koufos, G. D., Kostopoulos, D. S., and Merceron, G. 2009. The late Miocene mammal faunas of the Mytilinii Basin, Samos Island, Greece: New Collection. 17. Palaeoecology–Palaeobiogeography. In Koufos, G. D. and Nagel, D., eds. The late Miocene mammal faunas of Samos. Beitrage zur Paläontologie 31:409428.Google Scholar
Kurtén, B. 1952. The Chinese Hipparion fauna. Commentationes Biologicae Societatis Scientiarum Fennicae 13:182.Google Scholar
Kurtén, B. 1972. The age of mammals. Columbia University Press, New York.Google Scholar
Leopold, E. 1969. Late Cenozoic palynology. Pp. 377–348 in Tschudy, R. S. and Scott, R. A., eds. Aspects of palynology. Wiley Interscience, New York.Google Scholar
Mai, D. H. 1995. Tertiäre Vegetationsgeschichte Europas, Methoden und Ergebnisse. Gustav Fischer, Jena.Google Scholar
Major, C. I. F. 1888. Sur un gisement d'ossements fossiles dans l'île de Samos contemporains de l'âge de Pikermi. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris 107:11781181.Google Scholar
Major, C. I. F. 1892. Le gisement ossifère de Mytilini et catalogue des ossements fossiles. Pp. 199 in de Stefani, C., Major, C. I. F. and Barbey, W., eds. Samos. Étude géologique, paléontologique et botanique. Georges Bridel, Lausanne.Google Scholar
Nichol, J. E. 1999. Geomorphological evidence and Pleistocene refugia in Africa. Geographical Journal 165:7989.CrossRefGoogle Scholar
O'Gara, B. W. 1978. Antilocapra americana . Mammalian Species 90:17.Google Scholar
Orgeta, M. 1979. Erste Ergebnisse einer palynologischen Unterschuchung der Lignite von Pikermi/Attica. Annales Géologiques des pays Helléniques 2:909921.Google Scholar
Quade, J., Solounias, N., and Cerling, T. E. 1994. Stable isotopic evidence from paleosol carbonates and fossil teeth in Greece for forest or woodlands over the past 11 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 108:4153.Google Scholar
Reitz, J. J., and Benefit, B. R. 2001. Dental microwear in Mesopithecus pentelici from the late Miocene of Pikermi, Greece. American Journal of Physical Anthropology 114(Suppl.):125.Google Scholar
Rivals, F., and Semprebon, G. 2006. A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stock-oceros onusrosagris from the Papago Springs Cave in Arizona to the modern Antilocapra americana . Journal of Vertebrate Paleontology 26:495500.Google Scholar
Rivals, F., and Solounias, N. 2007. Differences in tooth microwear of populations of caribou (Rangifer tarandus, Ruminantia, Mammalia) and implications to ecology, migration, glaciations and dental evolution. Journal of Mammalian Evolution 14:182192.Google Scholar
Rivals, F., Solounias, N., and Mihlbachler, M. C. 2007. Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison . Quaternary Research 68:338346.Google Scholar
Rössner, G. E., and Heissig, K. 1999. The Miocene mammals of Europe. Friedrich Pfeil, Munich.Google Scholar
Sauvage, J. 1977. Les études palynologiques du Néogène et du Quaternaire en Grèce et leurs applications a la néotectonique des Hellénides (Corinthie, Eubée, Béotie, Phocide et Attique). Bulletin de la Société Géologique de France 19:695700.Google Scholar
Schaller, G. B. 1967. The deer and the tiger. University of Chicago Press, Chicago.Google Scholar
Schlosser, M. 1904. Die fossilen Cavicornia von Samos. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients 17:21118.Google Scholar
Semprebon, G. M., and Rivals, F. 2007. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 253:332347.Google Scholar
Semprebon, G. M., Godfrey, L. R., Solounias, N., Sutherland, M. R., and Jungers, W. L. 2004. Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution 47:115144.Google Scholar
Solounias, N. 1981a. The Turolian fauna from the island of Samos, Greece. With special emphasis on the hyaenids and the bovids. Contributions to Vertebrate Evolution 6:1232.Google Scholar
Solounias, N. 1981b. Mammalian fossils of Samos and Pikermi, Part 2. Resurrection of a classic Turolian fauna. Annals of the Carnegie Museum 50:231270.Google Scholar
Solounias, N. 2007a. The Giraffidae. Pp. 257277 in Prothero, D. R. and Foss, S. E., eds. The evolution of artiodactyls. Johns Hopkins University Press, Baltimore.Google Scholar
Solounias, N. 2007b. The Bovidae. Pp. 278291 in Prothero, D. R. and Foss, S. E., eds. The evolution of artiodactyls. Johns Hopkins University Press, Baltimore.Google Scholar
Solounias, N., and Hayek, L.-A. C. 1993. New methods of tooth microwear analysis and application to dietary determination of two extinct antelopes. Journal of Zoology 229:421445.Google Scholar
Solounias, N., and Moelleken, S. M. C. 1992a. Dietary adaptation of two goat ancestors and evolutionary considerations. Geobios 25:797809.Google Scholar
Solounias, N., and Moelleken, S. M. C. 1992b. Tooth microwear analysis of Eotragus sansaniensis (Mammalia: Ruminantia), one of the oldest known bovids. Journal of Vertebrate Paleontology 12:113121.Google Scholar
Solounias, N., and Moelleken, S. M. C. 1993. Dietary adaptation of some extinct ruminants determined by premaxillary shape. Journal of Mammalogy 74:10591074.CrossRefGoogle Scholar
Solounias, N., and Moelleken, S. M. C. 1994. Dietary differences between two archaic ruminant species from Sansan, France. Historical Biology 7:203220.Google Scholar
Solounias, N., and Moelleken, S. M. C. 1999a. The Miocene gazelle from Greece as a model for detecting Darwinian evolutionary change. Annales Musei Goulandris 10:291308.Google Scholar
Solounias, N., and Moelleken, S. M. C. 1999b. Dietary determination of extinct bovids through cranial foraminal analysis, with radiographic applications. Annales Musei Goulandris 10:267290.Google Scholar
Solounias, N., and Semprebon, G. M. 2002. Advances in the reconstruction of ungulate ecomorphology and application to early fossil equids. American Museum Novitates 3366:149.2.0.CO;2>CrossRefGoogle Scholar
Solounias, N., Teaford, M., and Walker, A. 1988. Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14:287300.Google Scholar
Solounias, N., Plavcan, M., Quade, J., and Witmer, L. 1999. The Pikermian Biome and the savanna myth. Pp. 427444 in Agusti, J., Andrews, P., and Rook, L., eds. Evolution of the Neogene terrestrial ecosystems in Europe. Cambridge University Press, Cambridge.Google Scholar
Solounias, N., McGraw, W. S., Hayek, L.-A. C., and Werdelin, L. 2000. The paleodiet of the Giraffidae. Pp. 8495 in Vrba, E. S. and Schaller, G. B., eds. Antelopes, deer, and relatives. Yale University Press, New Haven, Conn.Google Scholar
Sondaar, P. 1971. The Samos Hipparion . Koninklijke Nederlandse Akademie van Wetenschappen B 74:417441.Google Scholar
Strömberg, C. A. E., Werdelin, L., Friis, E. M., and Saraç, G. 2007. The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: Phytolith evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 250:1849.Google Scholar
Szalay, F. S., and Delson, E. 1979. Evolutionary history of primates. Academic Press, New York.Google Scholar
Van Couvering, J. A., and Miller, J. A. 1971. Late Miocene marine and non-marine time scale in Europe. Nature 230:559563.Google Scholar
Velitzelos, E., and Gregor, H. J. 1990. Some aspects of the Neogene floral history in Greece. Review of Paleobotany and Palynology 62:291307.Google Scholar
Weber, M. C. W. 1904. Über tertiäre Rhinocerotiden von Insel Samos (I). Bulletin de la Société Impériale des Naturalistes de Moscou 17:477501.Google Scholar
Weber, M. C. W. 1905. Über tertiäre Rhinocerotiden von Insel Samos (II). Bulletin de la Société Impériale des Naturalistes de Moscou 18:344363.Google Scholar
Weidmann, M., Solounias, N., Drake, R. E., and Curtis, G. H. 1984. Neogene stratigraphy of the Mytilinii Basin, Samos Island, Greece. Geobios 17:477490.Google Scholar
Woodburne, M. O., and Bernor, R. L. 1980. On superspecific groups of some Old World hipparionine horses. Journal of Paleontology 54:13191348.Google Scholar
Youlatos, D. 2003. Calcaneal features of the Greek Miocene primate Mesopithecus pentelicus (Cercopithecoidea: Colobinae). Geobios 36:229239.Google Scholar